Regularization, Optimization, Kernels, and Support Vector Machines
Home > Technology & Engineering > Energy technology & engineering > Electrical engineering > Power generation & distribution > Regularization, Optimization, Kernels, and Support Vector Machines
Regularization, Optimization, Kernels, and Support Vector Machines

Regularization, Optimization, Kernels, and Support Vector Machines


     0     
5
4
3
2
1



International Edition


About the Book

Regularization, Optimization, Kernels, and Support Vector Machines offers a snapshot of the current state of the art of large-scale machine learning, providing a single multidisciplinary source for the latest research and advances in regularization, sparsity, compressed sensing, convex and large-scale optimization, kernel methods, and support vector machines. Consisting of 21 chapters authored by leading researchers in machine learning, this comprehensive reference:

  • Covers the relationship between support vector machines (SVMs) and the Lasso
  • Discusses multi-layer SVMs
  • Explores nonparametric feature selection, basis pursuit methods, and robust compressive sensing
  • Describes graph-based regularization methods for single- and multi-task learning
  • Considers regularized methods for dictionary learning and portfolio selection
  • Addresses non-negative matrix factorization
  • Examines low-rank matrix and tensor-based models
  • Presents advanced kernel methods for batch and online machine learning, system identification, domain adaptation, and image processing
  • Tackles large-scale algorithms including conditional gradient methods, (non-convex) proximal techniques, and stochastic gradient descent

Regularization, Optimization, Kernels, and Support Vector Machines is ideal for researchers in machine learning, pattern recognition, data mining, signal processing, statistical learning, and related areas.


About the Author:

Johan A.K. Suykens is a professor at Katholieke Universiteit Leuven, Belgium, where he obtained a degree in electro-mechanical engineering and a Ph.D in applied sciences. He has been a visiting postdoctoral researcher at the University of California, Berkeley, USA, and a postdoctoral researcher with the Fonds Wetenschappelijk Onderzoek - Vlaanderen, Belgium. A senior IEEE member, he has co/authored and edited several books; received many prestigious awards; directed, co/organized, and co/chaired numerous international conferences; and served as associate editor for the IEEE Transactions on Circuits and Systems and the IEEE Transactions on Neural Networks.

Marco Signoretto is currently a visiting lecturer at the Centre for Computational Statistics and Machine Learning (CSML), University College London, UK, in the framework of a postdoctoral fellowship with the Belgian Fund for Scientific Research (FWO). He holds a Ph.D in mathematical engineering from Katholieke Universiteit Leuven, Belgium; a degree in electronic engineering (Laurea Magistralis) from the University of Padova, Italy; and an M.Sc in methods for management of complex systems from the University of Pavia, Italy. His research interests include practical and theoretical aspects of mathematical modeling of structured data, with special focus on multivariate time-series, networks, and dynamical systems. His current work deals with methods based on (convex) optimization, structure-inducing penalties, and spectral regularization.

Andreas Argyriou has received degrees in computer science from the Massachusetts Institute of Technology, Cambridge, USA, and a Ph.D in computer science from University College London (UCL), UK. The topic of his Ph.D work has been on machine learning methodologies integrating multiple tasks and data sources. He has held postdoctoral and research faculty positions at UCL; Toyota Technological Institute at Chicago, Illinois, USA; and Katholieke Universiteit Leuven, Belgium. He is currently serving an RBUCE-UP fellowship at École Centrale Paris, France. His current interests are in the areas of kernel methods, multitask learning, compressed sensing, and convex optimization methods.


Best Sellers



Product Details
  • ISBN-13: 9780367658984
  • Publisher: Taylor and Francis
  • Publisher Imprint: CRC Press
  • Height: 233 mm
  • No of Pages: 525
  • Series Title: Chapman & Hall/CRC Machine Learning & Pattern Recognition
  • Weight: 503 gr
  • ISBN-10: 0367658984
  • Publisher Date: 02 Oct 2020
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 0 mm
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Regularization, Optimization, Kernels, and Support Vector Machines
Taylor and Francis -
Regularization, Optimization, Kernels, and Support Vector Machines
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Regularization, Optimization, Kernels, and Support Vector Machines

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!