Reinforcement Learning Algorithms: Analysis and Applications
Home > Computer & Internet > Computer programming / software development > Compilers > Reinforcement Learning Algorithms: Analysis and Applications
Reinforcement Learning Algorithms: Analysis and Applications

Reinforcement Learning Algorithms: Analysis and Applications


     0     
5
4
3
2
1



International Edition


About the Book

Prediction Error and Actor-Critic Hypotheses in the Brain.- Reviewing on-policy / off-policy critic learning in the context of Temporal Differences and Residual Learning.- Reward Function Design in Reinforcement Learning.- Exploration Methods In Sparse Reward Environments.- A Survey on Constraining Policy Updates Using the KL Divergence.- Fisher Information Approximations in Policy Gradient Methods.- Benchmarking the Natural gradient in Policy Gradient Methods and Evolution Strategies.- Information-Loss-Bounded Policy Optimization.- Persistent Homology for Dimensionality Reduction.- Model-free Deep Reinforcement Learning - Algorithms and Applications.- Actor vs Critic.- Bring Color to Deep Q-Networks.- Distributed Methods for Reinforcement Learning.- Model-Based Reinforcement Learning.- Challenges of Model Predictive Control in a Black Box Environment.- Control as Inference?



About the Author:

Boris Belousov is a Ph.D. student at Technische Universität Darmstadt, Germany, advised by Prof. Jan Peters. He received his M.Sc. degree from the University of Erlangen-Nuremberg, Germany, in 2016, supported by a DAAD scholarship for academic excellence. Boris is now working toward combining optimal control and information theory with applications to robotics and reinforcement learning.

Hany Abdulsamad is a Ph.D. student at the TU Darmstadt, Germany. He graduated with a Master's degree in Automation and Control from the faculty of Electrical Engineering and Information Technology at the TU Darmstadt. His research interests range from optimal control and trajectory optimization to reinforcement learning and robotics. Hany's current research focuses on learning hierarchical structures for system identification and control.

After graduating with a Master's degree in Autonomous Systems from the Technische Universität Darmstadt, Pascal Klink pursued his Ph.D. studies at the Intelligent Autonomous Systems Group of the TU Darmstadt, where he developed methods for reinforcement learning in unstructured, partially observable real-world environments. Currently, he is investigating curriculum learning methods and how to use them to facilitate learning in these environments.

Simone Parisi joined Prof. Jan Peter's Intelligent Autonomous System lab in October 2014 as a Ph.D. student. Before pursuing his Ph.D., Simone completed his M.Sc. in Computer Science Engineering at the Politecnico di Milano, Italy, and at the University of Queensland, Australia, under the supervision of Prof. Marcello Restelli and Dr. Matteo Pirotta. Simone is currently working to develop reinforcement learning algorithms that can achieve autonomous learning in real-world tasks with little to no human intervention. His research interests include, among others, reinforcement learning, robotics, dimensionality reduction, exploration, intrinsic motivation, and multi-objective optimization. He has collaborated with Prof. Emtiyaz Khan and Dr. Voot Tangkaratt of RIKEN AIP in Tokyo, and his work has been presented at universities and research institutes in the US, Germany, Japan, and Holland.

Jan Peters is a Full Professor of Intelligent Autonomous Systems at the Computer Science Department of the Technische Universität Darmstadt and an adjunct senior research scientist at the Max-Planck Institute for Intelligent Systems, where he heads the Robot Learning Group (combining the Empirical Inference and Autonomous Motion departments). Jan Peters has received numerous awards, most notably the Dick Volz Best US PhD Thesis Runner Up Award, the Robotics: Science & Systems - Early Career Spotlight Award, the IEEE Robotics & Automation Society's Early Career Award, and the International Neural Networks Society's Young Investigator Award.



Best Sellers



Product Details
  • ISBN-13: 9783030411879
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 206
  • Series Title: Studies in Computational Intelligence
  • Weight: 530 gr
  • ISBN-10: 3030411877
  • Publisher Date: 20 Feb 2021
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 14 mm
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Reinforcement Learning Algorithms: Analysis and Applications
Springer International Publishing -
Reinforcement Learning Algorithms: Analysis and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Reinforcement Learning Algorithms: Analysis and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!