- 了解流动性,房屋净值和许多其他关键银行业特征变量的作用;
- 选择并处理变量;
- 预测违约、偿付、损失率和风险敞口;
- 利用危机前特征预测经济衰退和危机后果;
- 理解COVID-19对信用风险带来的影响;
- 将创新的抽样技术应用于模型训练和验证;
- 从Logit分类器到随机森林和神经网络的深入学习;
- 进行无监督聚类、主成分和贝叶斯技术的应用;
- 为CECL、IFRS 9和CCAR建立多周期模型;
- 建立用于在险价值和期望损失的信贷组合相关模型;
- 使用更多真实的信用风险数据并运行超过1500行的代码...
- Understand the role of liquidity, equity and many other key banking features
- Engineer and select features
- Predict defaults, payoffs, loss rates and exposures
- Predict downturn and crisis outcomes using pre-crisis features
- Understand the implications of COVID-19
- Apply innovative sampling techniques for model training and validation
- Deep-learn from Logit Classifiers to Random Forests and Neural Networks
- Do unsupervised Clustering, Principal Components and Bayesian Techniques
- Build multi-period models for CECL, IFRS 9 and CCAR
- Build credit portfolio correlation models for VaR and Expected Shortfal
- Run over 1,500 lines of pandas, statsmodels and scikit-learn Python code
- Access real credit data and much more ...