Action Recognition Using Python and Recurrent Neural Network
Home > Computer & Internet > Computer science > Signal processing > Action Recognition Using Python and Recurrent Neural Network
Action Recognition Using Python and Recurrent Neural Network

Action Recognition Using Python and Recurrent Neural Network


     0     
5
4
3
2
1



International Edition


About the Book

* Updated in May, 2019!
* Research fields: Computer Vision and Machine Learning.
* Book Topic: Action recognition from videos.
* Recognition Tool: Recurrent Neural Network (RNN) with LSTM (Long-Short Term Memory) layer and fully connected layer.
* Programming Language: Step-by-step implementation with Python in Jupyter Notebook.
* Major Steps: Building a network, training the network, testing the network, comparing the network with an SVM (Support Vector Machines) classifier.
* Processing Units to Execute the Codes: CPU and GPU (on Google Colaboratory).
* Image Feature Extraction Tool: Pretrained VGG16 network.
* Dataset: UCF101 (the first 15 actions, 2010 videos).
* Main Results: For the testing data, the highest prediction accuracy from the RNN is 86.97%, which is a little higher than that from the SVM classifier (86.09%).
* Detailed Description:
Recurrent Neural Network (RNN) is a great tool to do video action recognition.
This book built an RNN with an LSTM (Long-Short Term Memory) layer and a fully connected layer to do video action recognition.
The RNN was trained and evaluated with VGG16 Features that were saved in .mat files; the features were extracted from images with a modified pretrained VGG16 network; the images were converted from videos in the UCF101 dataset, which has 101 different actions including 13,320 videos; please notice that only the first 15 actions in this dataset were used to do the recognition.
The codes were implemented step-by-step with Python in Jupyter Notebook, and they could be executed on both CPUs and GPUs; free GPUs on Google Colaboratory were used as hardware accelerator to do most of the calculations.
For the purpose of getting a higher testing accuracy, the architecture of the network was regulated, and parameters of the network and its optimizer were fine-tuned.
For comparison purpose only, an SVM (Support Vector Machines) classifier was trained and tested.
For the first 15 actions in the UCF101 dataset, the highest prediction accuracy of the testing data from the RNN is 86.97%, which is a little higher than that from the SVM classifier (86.09%).
In conclusion, the performances of the RNN and the SVM classifier are approximately the same for the task in this book, which is a little embarrassed. However, RNN does have its own advantages in many other cases in the fields of Computer Vision and Machine Learning, and the implementation in this book can be an introduction to this topic in order to throw out a minnow to catch a whale.


Best Sellers



Product Details
  • ISBN-13: 9781798429044
  • Publisher: Independently Published
  • Publisher Imprint: Independently Published
  • Height: 229 mm
  • No of Pages: 112
  • Series Title: Computer Vision and Machine Learning
  • Weight: 209 gr
  • ISBN-10: 1798429047
  • Publisher Date: 28 Feb 2019
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 6 mm
  • Width: 152 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Action Recognition Using Python and Recurrent Neural Network
Independently Published -
Action Recognition Using Python and Recurrent Neural Network
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Action Recognition Using Python and Recurrent Neural Network

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!