About the Book
The use of secondary interactions for the activation of non-reactive substrates constitutes a new and modern approach in catalysis.
This first comprehensive treatment of this important research field covers the entire field and reveals the links between the various chemical disciplines. It thus adopts an interdisciplinary approach, making it of interest to the whole chemical community.
A must for organic, inorganic, catalytic and complex chemists, as well as those working with/on organometallics.
Table of Contents:
Preface XIII
List of Contributors XV
1 Chemistry of Metalated Container Molecules 1
Berthold Kersting
1.1 Introduction 1
1.2 Metalated Container Molecules: A Brief Overview 2
1.3 Metalated Container Molecules of Binucleating Supporting Ligands 2
1.3.1 Synthesis 3
1.3.2 Coordination Chemistry of Binucleating Supporting Ligands 4
1.3.3 Effects of N-alkylation on the Molecular and Electronic Structures of the Complexes 5
1.3.4 The Ligand Matrix as a Medium 6
1.3.5 Variation, Coordination Modes and Activation of Coligands 7
1.3.6 Reactivity of the Complexes 10
1.4 Conclusions 12
References 13
2 The Chemistry of Superbasic Guanidines 17
Jörg Sundermeyer, Volker Raab, Ekatarina Gaoutchenova, Udo Garrelts, Nuri Abacilar, and Klaus Harms
2.1 Properties of the Guanidine Functionality 17
2.2 Design of Superbasic Proton Sponges 18
2.3 Some Perspectives in Proton Sponge Chemistry 20
2.4 Multidentate Superbasic Guanidine Ligands as Receptors for Metal Cations 22
2.5 The Chemistry of Guanidine Copper Complexes 24
2.6 The Chemistry of Guanidine Zinc Complexes 31
2.7 Conclusions 35
References 35
3 Iron Complexes and Dioxygen Activation 39
Thomas Nebe, Jing-Yuan Xu, and Siegfried Schindler
3.1 Introduction 39
3.2 Dinuclear Iron Peroxo Complexes 40
3.3 Tripodal Tetradentate Ligands and Derivatives 42
3.3.1 Tmpa 42
3.3.2 Uns-penp 44
3.4 Mononuclear Iron Peroxo Complexes 46
3.5 Mononuclear Iron Oxo Species 48
3.6 Work in Progress 49
3.7 Conclusions 49
References 50
4 Tuning of Structures and Properties of Bispidine Complexes 53
Peter Comba and Marion Kerscher
4.1 Introduction 53
4.2 Jahn–Teller Isomerism with Copper(II) Bispidines 55
4.3 Stabilization of High-spin Ferryl Complexes 59
4.4 Jahn–Teller-distorted Cobalt(III) Complexes 61
4.5 Conclusions 62
References 63
5 Novel Phosphorus and Nitrogen Donor Ligands Bearing Secondary Functionalities for Applications in Homogeneous Catalysis 65
Anna-Katharina Pleier, Yu Sun, Anett Schubert, Dirk Zabel, Claudia May, Andreas Reis, Gotthelf Wolmershäuser, and Werner R. Thiel
5.1 Introduction 65
5.2 Phosphine Ligands 66
5.2.1 Cooperative Effects for Ligand Self-organization 66
5.2.2 Phosphines with Pyrazole and Pyrimidine Substituents 72
5.3 Nitrogen Donor Ligands Without Phosphorus Sites 77
5.4 Conclusion 85
References 85
6 Square-Pyramidal Coordinated Phosphine Iron Fragments: A Tale of the Unexpected 89
Andreas Grohmann and Stephan Kohl
6.1 Introduction 89
6.2 Polyphosphine Ligands with Three and Four Coordinating Arms 91
6.3 C–P Bond Activation and Agostic Interactions in Iron Complexes of Polypodal Phosphine Ligands 92
6.4 Mechanistic Considerations 99
6.5 Conclusion 100
References 101
7 Regioselective Catalytic Activity of Complexes with NH,NR-substituted Heterocyclic Carbene Ligands 103
Siegfried R. Waldvogel, Anke Spurg, and F. Ekkehardt Hahn
7.1 Introduction 103
7.2 Concept of Regioselective Substrate Activation 103
7.3 Synthesis of Complexes with NH,NR-stabilized NHC Ligands 106
7.4 Preparation of Substrates for Catalytic Experiments 115
7.5 Catalysis Experiments 116
7.6 Conclusions and Summary 119
References 120
8 Functionalized Cycloheptatrienyl-Cyclopentadienyl Sandwich Complexes as Building Blocks in Metallo-supramolecular Chemistry 123
Matthias Tamm
8.1 Introduction 123
8.2 Syntheses and Electronic Structures of Group 4 Cycloheptatrienyl-Cyclopentadienyl Sandwich Complexes 124
8.3 Syntheses and Reactivity of ansa-Cycloheptatrienyl-Cyclopentadienyl Complexes 130
8.4 Ring-opening Reactions of ansa-Cycloheptatrienyl-Cyclopentadienyl Complexes 135
8.5 Phosphine-functionalized Cycloheptatrienyl-Cyclopentadienyl Sandwich Complexes 140
References 143
9 Monosaccharide Ligands in Organotitanium and Organozirconium Chemistry 147
Peter Kitaev, Daniela Zeysing, and Jürgen Heck
9.1 Introduction 147
9.2 Synthesis of Organotitanium Carbohydrate Compounds 147
9.3 Organotitanium Carbohydrate Compounds for Use in Catalytic Reactions: Polymerization of Ethylene 152
9.4 Intramolecular Hydroamination of Aminoalkenes 153
9.5 Organozirconium Carbohydrate Compounds 155
9.6 Amine Exchange 156
9.7 Chiral Recognition 157
9.7.1 Diels–Alder Reaction 159
9.7.2 Nucleophilic Addition 159
9.8 Conclusions 162
References 163
10 Reactions of C–F Bonds with Titanocene and Zirconocene: From Secondary Interaction via Bond Cleavage to Catalysis 165
Uwe Rosenthal, Vladimir V. Burlakov, Perdita Arndt, Anke Spannenberg, Ulrike Jäger-Fiedler, Marcus Klahn, and Marko Hapke
10.1 Introduction and Background 165
10.2 Secondary Interactions with C–F Bonds 166
10.2.1 Reactions of Metallacyclopropenes with B(C6F5)3 166
10.2.2 Reactions of Five-membered Metallacycles with B(C6F5)3 170
10.3 Formation of M–F Bonds 171
10.3.1 Stoichiometric Cleavage of C–F Bonds 171
10.3.2 Stoichiometric Formation by M–C Bond Cleavage and Exchange Reactions 174
10.4 Stoichiometric Formation of Zr–H Bonds 174
10.4.1 From Zr–F/Al–H to Zr–H/Al–F Bonds 174
10.5 Catalytic Formation of Zr–H Bonds 175
10.5.1 From Zr–F using Al–H to Zr–H and Al–F Bonds 175
10.5.2 Catalytic Ethene Polymerization 176
10.5.3 Catalytic Hydrodefluorination of Activated C–F Bonds 178
10.5.4 Hydrodefluorination of Nonactivated C–F Bonds by Diisobutylaluminumhydride via the Aluminum Cation [iBu2Al]þ 178
10.6 Conclusion 179
References 180
11 Bisazines in the Coordination Sphere of Early Transition Metals 183
Ruediger Beckhaus
11.1 Introduction 183
11.2 Results and Discussion 185
11.2.1 Formation of Molecular Architectures 185
11.2.2 Molecular Architectures Accompanied by Radical-induced C–C Coupling Reactions 195
11.2.3 Molecular Architectures Based on C–C Coupling Reactions Initiated by C–H Bond Activation Reactions 199
11.3 Conclusions and Future Directions 203
References 204
12 Bifunctional Molecular Systems with Pendant Bis(pentafluorophenyl)boryl Groups: From Intramolecular CH-activation to Heterolytic Dihydrogen Splitting 209
Michael Hill, Christoph Herrmann, Patrick Spies, Gerald Kehr, Klaus Bergander, Roland Fröhlich, and Gerhard Erker
12.1 Introduction 209
12.2 Bifunctional Zirconium/Boron Systems 210
12.3 Bifunctional Group 9 Metal/Boron Systems 216
12.4 Bifunctional Phosphorus/Boron Systems 223
12.5 Conclusions 228
References 228
13 Ruthenium-containing Polyoxotungstates: Structure and Redox Activity 231
Ulrich Kortz
13.1 Introduction 231
13.2 The Organoruthenium(II)-containing 49-Tungsto-8-Phosphate [{K(H2O)}3{Ru(p cymene)(H2O)}4P8W49O186(H2O)2]27_ 232
13.3 The Mono-Ruthenium(III)-substituted Keggin-Type 11-Tungstosilicate [a-SiW11O39RuIII(H2O)]5– and its Dimerization 236
13.4 Conclusions 241
References 242
14 From NO to Peroxide Activation by Model Iron(III) Complexes 245
Alicja Franke, Natalya Hessenauer-Ilicheva, Joo-Eun Jee, and Rudi van Eldik
14.1 Introduction 245
14.2 NO Activation by Fe(III) Complexes 246
14.2.1 Fe(III)-Porphyrins 246
14.2.2 Cytochrome P450 and Model Complexes 254
14.3 Peroxide Activation by Fe(III) Complexes 260
14.3.1 Cytochrome P450 262
14.3.2 Fe(III) Porphyrins 263
14.3.3 Catalytic Oxidation Cycle 266
14.4 Conclusions 271
References 272
15 Synthetic Nitrogen Fixation with Molybdenum and Tungsten Phosphine Complexes: New Developments 273
Gerald Stephan and Felix Tuczek
15.1 Introduction 273
15.2 Mechanistic Investigation of the Chatt Cycle 276
15.2.1 Protonation of N2 276
15.2.2 N–N Cleavage 278
15.2.3 Reactivity of Nitrido and Imido Complexes 280
15.2.4 DFT Calculations of the Chatt Cycle 282
15.3 New Phosphine and Mixed P/N Ligands for Synthetic Nitrogen Fixation 285
15.3.1 Tetraphos Ligands 285
15.3.2 Pentaphosphine Complexes 287
15.3.3 Mixed P/N Ligands 291
15.4 Summary and Conclusions 294
References 294
16 Directed C–H Functionalizations 297
Carsten Bolm
16.1 Introduction 297
16.2 Results and Discussion 300
16.3 Conclusions 307
References 307
17 Development of Novel Ruthenium and Iron Catalysts for Epoxidation with Hydrogen Peroxide 313
Man Kin Tse, Bianca Bitterlich, and Matthias Beller
17.1 Introduction 313
17.2 Development of Epoxidation Catalysts Using H2O2 314
17.2.1 Ruthenium-catalyzed Epoxidation 315
17.2.2 Biomimetic Iron-catalyzed Epoxidation 318
References 332
18 Pentacoordinating Bis(oxazoline) Ligands with Secondary Binding Sites 339
Caroline A. Schall, Michael Seitz, Anja Kaiser, and Oliver Reiser
References 348
19 Flavin Photocatalysts with Substrate Binding Sites 349
Harald Schmaderer, Jiri Svoboda, and Burkhard König
19.1 Introduction 349
19.2 Templated Flavin Photoreductions 351
19.3 Templated Flavin Photooxidations 353
19.4 Summary and Outlook 355
References 356
20 New Catalytic Cu-, Pd- and Stoichiometric Mg-, Zn-Mediated Bond Activations 359
Tobias Thaler, Hongjun Ren, Nina Gommermann, Giuliano C. Clososki, Christoph J. Rohbogner, Stefan H. Wunderlich, and Paul Knochel
20.1 Introduction 359
20.2 Catalytic Activation 360
20.2.1 C–H Bond Activation for the Preparation of Condensed Polycyclic Alkaloids 360
20.2.2 Activation of Terminal Alkynes in a One-pot Three-component Enantioselective Synthesis of Propargylamines 363
20.3 Stoichiometric Activation 366
20.3.1 The Halogen-Magnesium Exchange 366
20.3.2 Selective Deprotonation Reactions with Magnesium and Zinc Amides 368
20.4 Summary 375
References 375
21 From Cobalt(II)-activated Molecular Oxygen to Hydroxymethyl-substituted Tetrahydrofurans 379
Bárbara Menéndez Pérez, Dominik Schuch, and Jens Hartung
21.1 Introduction [1] 379
21.2 Thermochemical Considerations 381
21.3 Cobalt(II)-Diketonate Complexes 382
21.4 Reactivity 383
21.5 Stereoselectivity Survey 388
21.6 A Derivative of Magnosalicin 390
21.7 Expanding the Scope 391
21.8 Concluding Remarks 393
References 395
22 Regiodivergent Epoxide Opening 397
Andreas Gansäuer, Florian Keller, Chun-An Fan, and Peter Karbaum
22.1 Epoxide Opening via Nucleophilic Substitution: Limitations Arising from the SN2-mechanism 397
22.2 Regiodivergent Epoxide Opening (REO): Mechanistic Implications, Synthetic Potential, and Aspects of Catalyst Design 398
22.3 Reductive Epoxide Opening via Electron Transfer from Titanocene(III) Reagents 400
22.3.1 Mechanism of Reductive Epoxide Opening: Predetermined for REO! 401
22.4 Synthetic Realization of Titanocene-catalyzed REO 402
References and Notes 407
23 Supramolecular Containers: Host-guest Chemistry and Reactivity 411
Markus Albrecht
23.1 Introduction 411
23.2 M4L4Tetrahedra 412
23.2.1 Flexible Triangular Ligands 412
23.2.2 Rigid Triangular Ligands 415
23.3 Amino Acid-bridged Dinuclear Titanium(IV) Complexes as Metalloenzyme Mimicry 420
23.4 Conclusions 423
References 423
24 Self-assembly of Dinuclear Helical Metallosupramolecular Coordination Compounds 427
Ulf Kiehne, Jens Bunzen, and Arne Lützen
24.1 Introduction 427
24.2 The Concept of Diastereoselective Self-assembly of Dinuclear Helicates 429
24.3 Synthesis of Building Blocks for the Covalent Assembly of Bis(chelating) Ligands 430
24.3.1 Synthesis of Dissymmetric Elements 430
24.3.2 Synthesis and Resolution of 9,90-Spirobifluorenes 431
24.3.3 Synthesis and Resolution of Tröger.s Base Derivatives 431
24.3.4 Synthesis of 2,20-Bipyridines 432
24.4 Synthesis of Bis(chelating) Ligands and Their Dinuclear Metal Complexes 434
24.4.1 D-Isomannide-based Ligand and Its Complexes 434
24.4.2 9,90-Spirobifluorene-based Ligand and Its Complexes 437
24.4.3 Tröger.s Base Derivatives-based Ligands and Their Complexes 437
24.5 Conclusions 441
References 442
Index 447