Many of the challenges of the next century will have physical dimensions, such as tsunamis, hurricanes, and climate change as well as human dimensions such as economic crises, epidemics, and emergency responses. With pioneering editors and expert contributors, Advanced Geoinformation Science explores how certain technical aspects of geoinformation have been used and could be used to address such global issues. The editors and chapter authors have been involved in global initiatives such as Global Earth Observation System of Systems (GEOSS) and Digital Earth, and research problems such as air quality, public health, and cloud computing.
The book delineates the problems communities are likely to face and how advanced geoinformation science can be a part of their solution. It introduces different methods in collecting spatial data as the initial feeds to geoinformation science and computing platforms. It discusses systems for data management, data integration and analysis, the geoinformation infrastructure, as well as knowledge capture, formatting, and utilization. The book then explores a variety of geoinformation applications, highlighting environmental, agriculture, and urban planning uses.
Geoinformation science encompasses more than just traditional technologies such as Remote Sensing, GIS, GPS, and supporting disciplines. And although the science continues to become more multidisciplinary, the literature remains compartmentalized according to the traditional disciplinary boundaries. Capturing recent developments in geoinformation science and linking IT with a wide range of Earth sciences, the authors explain how advanced technology and concepts play a significant role in recent advancements. Enhanced with forty-four color illustrations, live examples such as GOS and AirNow, and insights from NASA, EPA, and USGS, the book provides a vision for the future and explores how to bring that vision into reality.
About the Author:
Chaowei Yang
is professor of geographic information science at George Mason University (GMU). His research interest is on utilizing spatiotemporal principles to optimize computing infrastructure to support science discoveries. He founded the Center for Intelligent Spatial Computing and the NSF Spatiotemporal Innovation Center. He served as PI or Co-I for projects totaling over $40M and funded by over 15 agencies, organizations, and companies. He has published 150+ articles and developed a number of GIS courses and a training program. He has graduated 20+ postdoctoral and PhD students who serve as professors and scientists in highly acclaimed U.S. and Chinese institutions. He received many national and international awards, such as the U.S. Presidential Environment Protection Stewardship Award in 2009. All his achievements are based on his practical knowledge of GIS and geospatial information systems. This book is a collection of such practical knowledge on how to develop GIS tools from a programming perspective. The content was offered in his programming and GIS algorithm classes during the past 10 years (2004â "2016) and has been adopted by his students and colleagues serving as professors at many universities in the United States and internationally.