This second of two comprehensive reference texts on differential equations continues coverage of the essential material students they are likely to encounter in solving engineering and mechanics problems across the field - alongside a preliminary volume on theory.
This book covers a very broad range of problems, including beams and columns, plates, shells, structural dynamics, catenary and cable suspension bridge, nonlinear buckling, transports and waves in fluids, geophysical fluid flows, nonlinear waves and solitons, Maxwell equations, Schrodinger equations, celestial mechanics and fracture mechanics and dynamics. The focus is on the mathematical technique for solving the differential equations involved.
All readers who are concerned with and interested in engineering mechanics problems, climate change, and nanotechnology will find topics covered in this book providing valuable information and mathematics background for their multi-disciplinary research and education.
About the Author: Professor K.T. Chau is Chair Professor of Geotechnical Engineering and former Associate Dean (Research and Development) at the Hong Kong Polytechnic University, where he was awarded the "Teaching Excellence Award in 2012/2013" by the Department of Civil and Environmental Engineering. He is a Fellow of the Hong Kong Institution of Engineers and past President of the Hong Kong Society of Theoretical and Applied Mechanics. He is the Chairman of the Elasticity Committee of the Engineering Mechanics Division of ASCE, the Chairman of the TC103 Technical Committee of Numerical Methods on Geomechanics of International Society of Soil Mechanics and Geotechnical Engineering and the Chairman of the Geomechanics Committee of the Applied Mechanics Division of ASME. He is also the Vice President of the Hong Kong Institute of Science.
His book "Analytic Methods in Geomechanics" was published in 2013 by CRC Press, and it is the first book of its kind, covering, continuum mechanics, tensor analysis, 2-D elasticity, 3-D elasticity, plasticity, fracture mechanics, viscoelasticity, poroelasticity, and dynamics and waves in geomaterials. Since 2012, he has been teaching subjects called "Engineering Analysis" and "Engineering Analysis & Computation" at PolyU. They are mainly using differential equations in engineering analysis.