Applied Machine Learning for Health and Fitness - Bookswagon
Home > Computer & Internet > Computer hardware > Personal computers > Applied Machine Learning for Health and Fitness
Applied Machine Learning for Health and Fitness

Applied Machine Learning for Health and Fitness


     0     
5
4
3
2
1



International Edition


About the Book

IntroductionMachine Learning is fun with sensors and sports. Today's data scientist is out there, on the ski slopes, or surfing the waves, and best way to apply machine learning is real life scenarios of sports. What can we do if we had the best, the ultimate model of our body and health monitoring us constantly? So, when we wanted to start a new sport, for example skiing or surfing, our personal body assistant could give us suggestions, like a personal coach. With machine learning and AI methods, imagine having a coach next to you 24/7.
Part I: Sensors
Chapter 1: Getting StartedWhy are sensors important for health and fitness? For coaches, athletes and health professionals, they provide and objective picture of your activity. It's often impossible to capture micro-movements and forces of a downhill racer, moving at 100 mph down a winding ski trail, but when equipped with sensors, every aspect of that movement can be captured, analyzed and studied. In this book we'll use various IoT devices that can be used for sports data collection: inertial measurement units (IMUs), attitude and heading reference systems (AHRS), inertial navigation systems (INS/GPS), pressure sensors and others.1. Types of sensors and what they measurea. IMUs, AHRSb. INS/GPSc. Pressure sensorsd. Heart ratee. Vision and camera2. Sport science and dataa. Why is data frequency so important? A typical GPS device in your mobile phone works at 1Hz, that is one reading per second. Why isn't this enough for most sports applications?b. Machine Learning really cares about data frequencies, as a rule of thumb we will use 100 Hz for most sensor data we collect3. How can Machine Learning help?a. Problems solved by machine learning for human movement, health and fitness applications4. Visualizing sports from sensor dataProject: First look at athlete movement analysis with a sample sensor data set
Chapter 2: Sensor HardwareIt turns out they don't sell sensors with built in machine learning at convenience stores just yet! So, we made some. We go over some sport specific requirements for sensors, where and how sensors are placed on the body and equipment. In this chapter we will cover choices for sensor hardware, communication from sensors for data collection and data choices for IoT devices. 1) Sensor IoT devices: IMU, AHRS, INS/GPS, Pressure, Proximity2) Sensor communication3) Data choices for IoT devicesProject: Learning to work with a sample SensorKit dataset
Chapter 3: Sensor SoftwareOur sensor is operating at a relatively high frequency of 100 samples per second (100 Hz). We need a special software to connect our sensor to the app. In this chapter we include a practical project on how to connect our sensor via a protocol like Bluetooth Low Energy to a mobile device and transfer data to the cloud.1) Sensor firmware2) Algorithms for sensor data processing3) Connecting with the app and the SDKProject: Writing the code to connect from sensor to the cloud
Chapter 4: 3D Printing SensorsProject: 3D printing is a fantastic technology for custom applications like sports! In this chapter I included a fun project on designing the case for our sensor, using 3D design software like Fusion 360 and 3D printing our sensor.1) Designing sensor casing model for sports
2) Printing the sensor3) Every sport is different!Project: Designing a case and 3D printing our sensor
Part II: Sensor DataSensors generate an enormous amount of data! In this part we learn about different types of sensor data, how to parse
About the Author: Kevin Ashley is a Microsoft architect, IoT expert, and professional ski instructor. He is an author and developer of top sports and fitness apps and platforms such as Active Fitness and Winter Sports with a multi-million user audience. Kevin often works with sports scientists, Olympic athletes, coaches and teams to advance technology use in sports.


Best Sellers



Product Details
  • ISBN-13: 9781484257715
  • Publisher: Apress
  • Publisher Imprint: Apress
  • Height: 234 mm
  • No of Pages: 259
  • Spine Width: 15 mm
  • Weight: 440 gr
  • ISBN-10: 1484257715
  • Publisher Date: 25 Aug 2020
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: A Practical Guide to Machine Learning with Deep Vision, Sensors and Iot
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Applied Machine Learning for Health and Fitness
Apress -
Applied Machine Learning for Health and Fitness
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Applied Machine Learning for Health and Fitness

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!