Artificial Neural Networks and Machine Learning - Icann 2019: Image Processing
Home > Computer & Internet > Computer programming / software development > Compilers > Artificial Neural Networks and Machine Learning - Icann 2019: Image Processing
Artificial Neural Networks and Machine Learning - Icann 2019: Image Processing

Artificial Neural Networks and Machine Learning - Icann 2019: Image Processing

|
     0     
5
4
3
2
1




International Edition


About the Book

Unsharp Masking Layer: Injecting Prior Knowledge in Convolutional Networks for Image Classification.- Distortion Estimation Through Explicit Modeling of the Refractive Surface.- Eye Movement-based Analysis on Methodologies and Efficiency in the Process of Image Noise Evaluation.- IBDNet: Lightweight Network for On-orbit Image Blind Denoising.- Aggregating Rich Deep Semantic Features for Fine-Grained Place Classification.- Improving Reliability of Object Detection for Lunar Craters using Monte Carlo Dropout.- An improved convolutional neural network for steganalysis in the scenario of reuse of the stego-key.- A New Learning-based One Shot Detection Framework For Natural Images.- Dense Receptive Field Network: A Backbone Network for Object Detection.- Referring Expression Comprehension via Co-attention and Visual Context.- Comparison between U-Net and U-ReNet models in OCR tasks.- Severe Convective Weather Classification in Remote Sensing Images by Semantic Segmentation.- Action Recognition Based on Divide-and-conquer.- An Adaptive Feature Channel Weighting Scheme for Correlation Tracking.- In-silico staining from bright-field and fluorescent images using deep learning.- A lightweight neural network for hard exudate segmentation of fundus image.- Attentional Residual Dense Factorized Network for Real-time Semantic Segmentation.- Random drop loss for tiny object segmentation: Application to lesion segmentation in fundus images.- Flow2Seg: Motion-Aided Semantic Segmentation.- COCO_TS Dataset: Pixel-level Annotations Based on Weak Supervision for Scene Text Segmentation.- Learning Deep Structured Multi-Scale Features for crisp and occlusion edge detection.- Graph-Boosted Attentive Network for Semantic Body Parsing.- A Global-Local Architecture Constrained by Multiple Attributes for Person Re-identification.- Recurrent Connections Aid Occluded Object Recognition by Discounting Occluders.- Learning Relational-Structural Networks for Robust Face Alignment.- An Efficient 3D-NAS Method for Video-based Gesture Recognition.- Robustness of deep LSTM networks in freehand gesture recognition.- Delving into the Impact of Saliency Detector: A GeminiNet for Accurate Saliency Detection.- FCN Salient Object Detection Using Region Cropping.- Object-Level Salience Detection By Progressively Enhanced Network.- Action unit assisted Facial Expression Recognition.- Discriminative Feature Learning using Two-stage Training Strategy for Facial Expression Recognition.- Action Units Classification using ClusWiSARD.- Automatic Estimation of Dog Age: The DogAge Dataset and Challenge.- Neural Network 3D Body Pose Tracking and Prediction for Motion-to-Photon Latency Compensation in Distributed Virtual Reality.- Variational Deep Embedding with Regularized Student-t Mixture Model.- A mixture-of-experts model for vehicle prediction using an online learning approach.- An Application of Convolutional Neural Networks for Analyzing Dogs' Sleep Patterns.- On the Inability of Markov Models to Capture Criticality in Human Mobility.- LSTM with Uniqueness Attention for Human Activity Recognition.- Comparative Research on SOM with Torus and Sphere Topologies for Peculiarity Classification of Flat Finishing Skill Training.- Generative Creativity: Adversarial Learning for Bionic Design.- Self-attention StarGAN for Multi-domain Image-to-image Translation.- Generative Adversarial Networks for Operational Scenario Planing of Renewable Energy Farms: A Study on Wind and Photovoltaic.- Constraint-Based Visual Generation.- Text to Image Synthesis based on Multiple Discrimination.- Disentangling Latent Factors of Variational Auto-Encoder with Whitening.- Training Discriminative Models to Evaluate Generative Ones.- Scene Graph Generation via Convolutional Message Passing and Class-aware Memory Embeddings.- Change Detection in Satellite Images using Reconstruction Errors of Joint Autoencoders.- Physical Adversarial Attacks by Projecting Perturbations.- Improved Forward-back


Best Sellers



Product Details
  • ISBN-13: 9783030305079
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 733
  • Spine Width: 39 mm
  • Weight: 1101 gr
  • ISBN-10: 3030305074
  • Publisher Date: 07 Sep 2019
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17-19, 2019, Proceedings, Part III
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Artificial Neural Networks and Machine Learning - Icann 2019: Image Processing
Springer International Publishing -
Artificial Neural Networks and Machine Learning - Icann 2019: Image Processing
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Artificial Neural Networks and Machine Learning - Icann 2019: Image Processing

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!