Artificial Neural Networks and Machine Learning - Icann 2020
Home > Computer & Internet > Computing: general > Health & safety aspects of computing > Artificial Neural Networks and Machine Learning - Icann 2020
Artificial Neural Networks and Machine Learning - Icann 2020

Artificial Neural Networks and Machine Learning - Icann 2020


     0     
5
4
3
2
1



International Edition


About the Book

Adversarial Machine Learning.- On the security relevance of initial weights in deep neural networks.- Fractal Residual Network for Face Image Super-Resolution.- From Imbalanced Classification to Supervised Outlier Detection Problems: Adversarially Trained Auto Encoders.- Generating Adversarial Texts for Recurrent Neural Networks.- Enforcing Linearity in DNN succours Robustness and Adversarial Image Generation.- Computational Analysis of Robustness in Neural Network Classifiers.- Bioinformatics and Biosignal Analysis.- Convolutional neural networks with reusable full-dimension-long layers for feature selection and classification of motor imagery in EEG signals.- Compressing Genomic Sequences by Using Deep Learning.- Learning Tn5 sequence bias from ATAC-seq on naked chromatin.- Tucker tensor decomposition of multi-session EEG data.- Reactive Hand Movements from Arm Kinematics and EMG Signals Based on Hierarchical Gaussian Process Dynamical Models.- Cognitive Models.- Investigating Efficient Learning and Compositionality in Generative LSTM Networks.- Fostering Event Compression using Gated Surprise.- Physiologically-inspired Neural Circuits for the Recognition of Dynamic Faces.- Hierarchical Modeling with Neurodynamical Agglomerative Analysis.- Convolutional Neural Networks and Kernel Methods.- Deep and Wide Neural Networks Covariance Estimation.- Monotone deep Spectrum Kernels.- Permutation Learning in Convolutional Neural Networks for Time Series Analysis.- Deep Learning Applications I.- GTFNet: Ground Truth Fitting Network for Crowd Counting.- Evaluation of Deep Learning Methods for Bone Suppression from Dual Energy Chest Radiography.- Multi-Person Absolute 3D Human Pose Estimation with Weak Depth Supervision.- Solar Power Forecasting Based on Pattern Sequence Similarity and Meta-Learning.- Analysis and Prediction of Deforming 3D Shapes using Oriented Bounding Boxes and LSTM Autoencoders.- Deep Learning Applications II.- Novel Sketch-based 3D Model Retrieval via Cross-domain Feature Clustering and Matching.- Multi-objective Cuckoo Algorithm for Mobile Devices Network Architecture Search.- DeepED: a Deep Learning Framework for Estimating Evolutionary Distances.- Interpretable Machine Learning Structure for an Early Prediction of Lane Changes.- Explainable Methods.- Convex Density Constraints for Computing Plausible Counterfactual Explanations.- Identifying Critical States by the Action-Based Variance of Expected Return.- Explaining Concept Drift by Means of Direction.- Few-shot Learning.- Context Adaptive Metric Model for Meta-Learning.- Ensemble-Based Deep Metric Learning for Few-Shot Learning.- More Attentional Local Descriptors for Few-shot Learning.- Implementation of Siamese-based Few-shot Learning Algorithms for the Distinction of COPD and Asthma Subjects.- Few-Shot Learning for Medical Image Classification.- Generative Adversarial Network.- Adversarial Defense via Attention-based Randomized Smoothing.- Learning to Learn from Mistakes: Robust Optimization for Adversarial Noise.- Unsupervised Anomaly Detection with a GAN Augmented Autoencoder.- An Efficient Blurring-Reconstruction Model to Defend against Adversarial Attacks.- EdgeAugment: Data Augmentation by Fusing and Filling Edge Map.- Face Anti-spoofing with a Noise-Attention Network Using Color-Channel Difference Images.- Generative and Graph Models.- Variational Autoencoder with Global- and Medium Timescale Auxiliaries for Emotion Recognition from Speech.- Improved Classification Based on Deep Belief Networks.- Temporal Anomaly Detection by Deep Generative Models with Applications to Biological Data.- Inferring, Predicting, and Denoising Causal Wave Dynamics.- PART-GAN: Privacy-Preserving Time-Series Sharing.- EvoNet: A Neural Network for Predicting the Evolution of Dynamic Graphs.- Hybrid Neural-symbolic Architectures.- Facial Expression Recognition Method based on a Part-based Temporal


Best Sellers



Product Details
  • ISBN-13: 9783030616083
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 891
  • Spine Width: 46 mm
  • Weight: 1314 gr
  • ISBN-10: 3030616088
  • Publisher Date: 20 Nov 2020
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: 29th International Conference on Artificial Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part I
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Artificial Neural Networks and Machine Learning - Icann 2020
Springer International Publishing -
Artificial Neural Networks and Machine Learning - Icann 2020
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Artificial Neural Networks and Machine Learning - Icann 2020

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!