A Box-Integration/WENO solver for the Boltzmann Transport Equation its Application to High-Speed Heterojunction Bipolar Transistors
Home > Technology & Engineering > Technology: general issues > A Box-Integration/WENO solver for the Boltzmann Transport Equation its Application to High-Speed Heterojunction Bipolar Transistors
A Box-Integration/WENO solver for the Boltzmann Transport Equation its Application to High-Speed Heterojunction Bipolar Transistors

A Box-Integration/WENO solver for the Boltzmann Transport Equation its Application to High-Speed Heterojunction Bipolar Transistors


     0     
5
4
3
2
1



International Edition


About the Book

The ongoing trend for high-frequency (HF) applications drives the development of high-speed devices. Therefore, trustworthy device simulations are inevitable for understanding and designing future HF devices. During the last decade, the predictive capabilities of Drift-Diffusion (DD) and Hydrodynamic (HD) transport models turned out to be insufficient for state-of-the-art high-frequency transistors. Consequently, a more physics based transport model helps to counter these issues and thus, the Boltzmann transport equation (BTE) comes into focus. In this thesis, a deterministic solution method for the BTE is pursued. First, physical fundamentals and mathematical preconsiderations for the treatment of the BTE are reviewed. This covers the calculation of band structures/dispersion relations, an overview of scattering mechanisms and a detailed description of the coordinate transformations required for analyzing prominent semiconducting materials, such as Silicon-Germanium and III-V compounds, like Indium-Phosphide. The second part focuses on the numerical treatment of the BTE. Besides the employed normalization strategy, the discretization of the BULK BTE is described in detail. Based on the latter, the extensions for the device BTE are specified. A method for the direct calculation of stationary BTE solutions - for the BULK and device case - is introduced and an overview of the WENO method is outlined. The third part is dedicated to the applications of the deterministic solution method and simulation results of the BTE. Recipes for calculating the most important quantities, like current/electron densities, are given. Simulation results for the BULK case and for hetero-junction bipolar transistors are presented and analyzed. Here, the focus is put on both Silicon/Silicon-Germanium and Indium-Phosphide/Indium-Gallium-Arsenide material systems. The part is concluded by a critical review on the current field of application. A summary and an outlook on future extensions
About the Author: Gerald Wedel received the M.S. degree in electrical engineering, working on hydrodynamic simulations for advanced SiGe heterojunction bipolar transistors, in 2008 from the Technische Universität Dresden, Dresden, Germany. He joined the Chair of Electron Devices and Integrated Circuits, Technische Universität Dresden, in 2008 investigating the physical limits of semiconductors devices, focusing on transport modeling and the development of numerical device simulators. In 2013, he has started to develop a deterministic Boltzmann transport equation (BTE) solver for Si/SiGe and III-V materials, which was the topic of the doctoral thesis he submitted and defended in 2016. In 2016, he also joined the Center of Advancing Electronics Dresden (Cfaed), Technische Universität Dresden, where he is currently working on the development of a deterministic BTE solver for carbon nanotube field-effect transistors.


Best Sellers



Product Details
  • ISBN-13: 9783744873727
  • Publisher: Books on Demand
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Dissertation
  • Width: 148 mm
  • ISBN-10: 3744873722
  • Publisher Date: 08 Aug 2017
  • Height: 210 mm
  • No of Pages: 274
  • Spine Width: 15 mm
  • Weight: 381 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A Box-Integration/WENO solver for the Boltzmann Transport Equation its Application to High-Speed Heterojunction Bipolar Transistors
Books on Demand -
A Box-Integration/WENO solver for the Boltzmann Transport Equation its Application to High-Speed Heterojunction Bipolar Transistors
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Box-Integration/WENO solver for the Boltzmann Transport Equation its Application to High-Speed Heterojunction Bipolar Transistors

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!