High-speed, power-efficient analog integrated circuits can be used as standalone devices or to interface modern digital signal processors and micro-controllers in various applications, including multimedia, communication, instrumentation, and control systems. New architectures and low device geometry of complementary metaloxidesemiconductor (CMOS) technologies have accelerated the movement toward system on a chip design, which merges analog circuits with digital, and radio-frequency components. CMOS: Analog Integrated Circuits: High-Speed and Power-Efficient Design describes the important trends in designing these analog circuits and provides a complete, in-depth examination of design techniques and circuit architectures, emphasizing practical aspects of integrated circuit implementation.
Focusing on designing and verifying analog integrated circuits, the author reviews design techniques for more complex components such as amplifiers, comparators, and multipliers. The book details all aspects, from specification to the final chip, of the development and implementation process of filters, analog-to-digital converters (ADCs), digital-to-analog converters (DACs), phase-locked loops (PLLs), and delay-locked loops (DLLs). It also describes different equivalent transistor models, design and fabrication considerations for high-density integrated circuits in deep-submicrometer process, circuit structures for the design of current mirrors and voltage references, topologies of suitable amplifiers, continuous-time and switched-capacitor circuits, modulator architectures, and approaches to improve linearity of Nyquist converters. The text addresses the architectures and performance limitation issues affecting circuit operation and provides conceptual and practical solutions to problems that can arise in the design process.
This reference provides balanced coverage of theoretical and practical issues that will allow the reader to design CMOS analog integrated circuits with improved electrical performance. The chapters contain easy-to-follow mathematical derivations of all equations and formulas, graphical plots, and open-ended design problems to help determine most suitable architecture for a given set of performance specifications. This comprehensive and illustrative text for the design and analysis of CMOS analog integrated circuits serves as a valuable resource for analog circuit designers and graduate students in electrical engineering.
About the Author: Tertulien Ndjountche is a senior member of the Institute of Electrical and Electronics Engineers (IEEE) and an member of Professional Engineer Ontario (PEO) in Gatineau, Canada.