Content-Based Image Classification at Bookstore UAE
Home > References & Encyclopaedias > Library & information sciences > Library, archive & information management > Content-Based Image Classification
Content-Based Image Classification

Content-Based Image Classification


     0     
5
4
3
2
1



Available


About the Book

Content-Based Image Classification: Efficient Machine Learning Using Robust Feature Extraction Techniques is a comprehensive guide to research with invaluable image data. Social Science Research Network has revealed that 65% of people are visual learners. Research data provided by Hyerle (2000) has clearly shown 90% of information in the human brain is visual. Thus, it is no wonder that visual information processing in the brain is 60,000 times faster than text-based information (3M Corporation, 2001). Recently, we have witnessed a significant surge in conversing with images due to the popularity of social networking platforms. The other reason for embracing usage of image data is the mass availability of high-resolution cellphone cameras. Wide usage of image data in diversified application areas including medical science, media, sports, remote sensing, and so on, has spurred the need for further research in optimizing archival, maintenance, and retrieval of appropriate image content to leverage data-driven decision-making. This book demonstrates several techniques of image processing to represent image data in a desired format for information identification. It discusses the application of machine learning and deep learning for identifying and categorizing appropriate image data helpful in designing automated decision support systems.

The book offers comprehensive coverage of the most essential topics, including:

  • Image feature extraction with novel handcrafted techniques (traditional feature extraction)
  • Image feature extraction with automated techniques (representation learning with CNNs)
  • Significance of fusion-based approaches in enhancing classification accuracy
  • MATLAB(R) codes for implementing the techniques
  • Use of the Open Access data mining tool WEKA for multiple tasks

The book is intended for budding researchers, technocrats, engineering students, and machine learning/deep learning enthusiasts who are willing to start their computer vision journey with content-based image recognition. The readers will get a clear picture of the essentials for transforming the image data into valuable means for insight generation. Readers will learn coding techniques necessary to propose novel mechanisms and disruptive approaches. The WEKA guide provided is beneficial for those uncomfortable coding for machine learning algorithms. The WEKA tool assists the learner in implementing machine learning algorithms with the click of a button. Thus, this book will be a stepping-stone for your machine learning journey.

Please visit the author's website for any further guidance at https: //www.rikdas.com/


About the Author:

Rik Das is a PhD (Tech.) and M.Tech. in Information Technology from the University of Calcutta, India. He is also a B.E. in Information Technology from the University of Burdwan, India. Rik has filed and published two Indian patents consecutively during the year 2018 and 2019 and has over 40 International publications till date. He has collaborated with professionals from leading multinational software companies and with Professors and researchers of Universities in India and abroad for research work in the domain of content based image classification. Rik has over 16 years of experience in research and academia and is currently an Assistant Professor for the Program of Information Technology at Xavier Institute of Social Service (XISS), Ranchi, India.

Rik is appointed as a Distinguished Speaker of the Association of Computing Machinery (ACM), New York, USA. He is featured in uLektz Wall of Fame as one of the Top 50 Tech Savvy Academicians in Higher Education across India for the year 2019. He is also a Member of International Advisory Committee of AI-Forum, UK. Rik has founded a YouTube channel named 'Curious Neuron' to disseminate knowledge and information to larger communities in the domain of machine learning, research and development and open source programming languages.


Best Sellers



Product Details
  • ISBN-13: 9780367371609
  • Publisher: Taylor and Francis
  • Publisher Imprint: CRC Press
  • Height: 234 mm
  • No of Pages: 180
  • Spine Width: 13 mm
  • Weight: 490 gr
  • ISBN-10: 036737160X
  • Publisher Date: 18 Dec 2020
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Sub Title: Efficient Machine Learning Using Robust Feature Extraction Techniques
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Content-Based Image Classification
Taylor and Francis -
Content-Based Image Classification
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Content-Based Image Classification

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!