Correlation Force Spectroscopy for Single Molecule Measurements
Home > Science & Mathematics > Chemistry > Inorganic chemistry > Correlation Force Spectroscopy for Single Molecule Measurements
Correlation Force Spectroscopy for Single Molecule Measurements

Correlation Force Spectroscopy for Single Molecule Measurements


     0     
5
4
3
2
1



International Edition


About the Book

Chapter 1 - Introduction
Overview of Single Molecule Force Spectroscopy Techniques
Experiments Using Single molecule AFM
Limitations of AFM-based single molecule force spectroscopy
Summary

Chapter 2- Correlation Force Spectroscopy
Correlation Force Spectroscopy: Rationale
Correlation Force Spectroscopy: Development
Laterally Offset Configuration
Vertically Offset Configuration
Analysis of Correlations between Two Cantilevers
Validation of Fluctuation-Dissipation Theorem for One Cantilever
Analysis of Thermal Fluctuations to obtain Correlations


Chapter 3- Dynamics of Single Molecules
Elastic Properties of Single Molecules: Worm-Like Chain and Freely-Jointed Chain Models
Hydrodynamics of Single Molecules: Dumbbell Model and Rouse Model
Internal Friction
Rouse with Internal Friction
Model of Linear Viscoelasticity of a Semiflexible Chain
Summary

Chapter 4- Microrheology with Correlation Force Spectroscopy
Existing Techniques of Rheometry
Experimental Methods
Comparison to Finite Element Analysis
Comparison to Simple Harmonic Oscillator Model
Summary

Chapter 5- Development of Colloidal Probe Correlation Force Spectroscopy: Case Study
Materials and Methods
Analysis
Results
Discussion
Summary

Chapter 6- Correlation Force Spectroscopy for Single Molecule Measurements
Effect of the Distance between Cantilever Tips
Harmonic Oscillator Modeling of Vertically Offset Correlation Force Spectroscopy
Summary

Chapter 7- Single Molecule Force Spectroscopy of Dextran
Materials and Methods
Results
Stretching a Dextran Molecule
Static Force-Elongation Mode
Dynamic Correlated Fluctuations Mode
Discussion
Summary

Chapter 8- Single Molecule Force Spectroscopy of Single-Stranded DNA
Rationale
Introduction Materials and Methods
Modal Analysis
Results
Discussion
Summary

Chapter 9- Summary
An Overview of Chapters
Future Work

Appendix I: Simple Harmonic Oscillator Model for Laterally Offset Correlation Force Spectroscopy

Appendix II: Simple Harmonic Oscillator Model for Vertically Offset Correlation Force Spectroscopy with Tethered Molecule

References


About the Author:

Milad Radiom received his PhD in Chemical Engineering at Virginia Tech in 2014, after MEng and BSc in Thermal and Fluids Engineering and Mechanical Engineering respectively from Nanyang Technological University and Amirkabir University of Technology. Thereafter, he was appointed as a postdoctoral research associate in Laboratory of Colloid and Surface Chemistry, University of Geneva. His research interests are physical chemistry of polymers, colloids and surfaces as related to single molecule force spectroscopy, micro-rheology and surface forces.


Best Sellers



Product Details
  • ISBN-13: 9783319386409
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Edition: Softcover reprint of the original 1st ed. 2015
  • Language: English
  • Returnable: Y
  • Spine Width: 8 mm
  • Width: 156 mm
  • ISBN-10: 3319386409
  • Publisher Date: 09 Oct 2016
  • Binding: Paperback
  • Height: 234 mm
  • No of Pages: 117
  • Series Title: Springer Theses
  • Weight: 267 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Correlation Force Spectroscopy for Single Molecule Measurements
Springer -
Correlation Force Spectroscopy for Single Molecule Measurements
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Correlation Force Spectroscopy for Single Molecule Measurements

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!