Data-Driven Modelling and Scientific Machine Learning in Continuum Physics
Home > General > Data-Driven Modelling and Scientific Machine Learning in Continuum Physics
Data-Driven Modelling and Scientific Machine Learning in Continuum Physics

Data-Driven Modelling and Scientific Machine Learning in Continuum Physics


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
About the Book

This monograph takes the reader through recent advances in data-driven methods and machine learning for problems in science--specifically in continuum physics. It develops the foundations and details a number of scientific machine learning approaches to enrich current computational models of continuum physics, or to use the data generated by these models to infer more information on these problems. The perspective presented here is drawn from recent research by the author and collaborators. Applications drawn from the physics of materials or from biophysics illustrate each topic. Some elements of the theoretical background in continuum physics that are essential to address these applications are developed first. These chapters focus on nonlinear elasticity and mass transport, with particular attention directed at descriptions of phase separation. This is followed by a brief treatment of the finite element method, since it is the most widely used approach to solve coupled partial differential equations in continuum physics.

With these foundations established, the treatment proceeds to a number of recent developments in data-driven methods and scientific machine learning in the context of the continuum physics of materials and biosystems. This part of the monograph begins by addressing numerical homogenization of microstructural response using feed-forward as well as convolutional neural networks. Next is surrogate optimization using multifidelity learning for problems of phase evolution. Graph theory bears many equivalences to partial differential equations in its properties of representation and avenues for analysis as well as reduced-order descriptions--all ideas that offer fruitful opportunities for exploration. Neural networks, by their capacity for representation of high-dimensional functions, are powerful for scale bridging in physics--an idea on which we present a particular perspective in the context of alloys.

One of the most compelling ideas in scientific machine learning is the identification of governing equations from dynamical data--another topic that we explore from the viewpoint of partial differential equations encoding mechanisms. This is followed by an examination of approaches to replace traditional, discretization-based solvers of partial differential equations with deterministic and probabilistic neural networks that generalize across boundary value problems. The monograph closes with a brief outlook on current emerging ideas in scientific machine learning.


Best Sellers



Product Details
  • ISBN-13: 9783031620287
  • Publisher: Springer International Publishing
  • Binding: BB
  • Language: eng
  • Returnable: Y
  • Weight: 548 gr
  • ISBN-10: 3031620283
  • Publisher Date: 30 Aug 2024
  • Height: 244 mm
  • No of Pages: 230
  • Spine Width: 20 mm
  • Width: 163 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Data-Driven Modelling and Scientific Machine Learning in Continuum Physics
Springer International Publishing -
Data-Driven Modelling and Scientific Machine Learning in Continuum Physics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Data-Driven Modelling and Scientific Machine Learning in Continuum Physics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!