Praise for the First Edition
The book goes beyond the usual textbook in that it provides more specific examples of real-world defect physics ... an easy reading, broad introductory overview of the field
―Materials Today
... well written, with clear, lucid explanations ...
―Chemistry World
This revised edition provides the most complete, up-to-date coverage of the fundamental knowledge of semiconductors, including a new chapter that expands on the latest technology and applications of semiconductors. In addition to inclusion of additional chapter problems and worked examples, it provides more detail on solid-state lighting (LEDs and laser diodes). The authors have achieved a unified overview of dopants and defects, offering a solid foundation for experimental methods and the theory of defects in semiconductors.
Matthew D. McCluskey is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley.
Eugene E. Haller is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland.
About the Author: Matthew D. McCluskey is a professor in the Department of Physics and Astronomy and Materials Science Program at Washington State University (WSU), Pullman, Washington. He received a Physics Ph.D. from the University of California (UC), Berkeley, in 1997, and was a postdoctoral researcher at the Xerox Palo Alto Research Center (PARC) (California) from 1997 to 1998. Dr. McCluskey joined WSU as an assistant professor in 1998. His research interests include defects in semiconductors, materials under high pressure, shock compression of semiconductors, and vibrational spectroscopy.
Eugene E. Haller is a professor emeritus at the University of California, Berkeley, and a member of the National Academy of Engineering. He received a Ph.D. in Solid State and Applied Physics from the University of Basel, Switzerland, in 1967. Dr. Haller joined the Lawrence Berkeley National Laboratory (California) as a staff scientist in 1973. In 1980, he was appointed associate professor in the Department of Materials Science Engineering, UC, Berkeley. His major research areas include semiconductor growth, characterization, and processing; far-infrared detectors, isotopically controlled semiconductors, and semiconductor nanocrystals.