Dual-Polarization Two-Port Fiber-Optic Gyroscope - Bookswagon
Home > Technology & Engineering > Electronics & communications engineering > Communications engineering / telecommunications > Dual-Polarization Two-Port Fiber-Optic Gyroscope
Dual-Polarization Two-Port Fiber-Optic Gyroscope

Dual-Polarization Two-Port Fiber-Optic Gyroscope


     0     
5
4
3
2
1



International Edition


About the Book

Introduction.- Polarization Error Compensation in Dual-Polarization IFOGs.- Theory Study of Optically Compensated Dual-Polarization IFOGs.- Output Properties of Dual-Polarization IFOGs.- Multi-Channel Signal Processing Methods for IFOGs.- Preliminary Test on an Engineering Prototype of Dual-Polarization IFOG.- Conclusions and Outlook.


About the Author:

Zinan Wang Sept.22, 1988 Data Center (Beijing), Agricultural Bank of China

The author has been studied fiber-optical sensors since 2008. In recent years, his researches mainly focus on the interferometric fiber-optic gyroscope (IFOG). His research achievements include novel structures and optimized signal processing methods for IFOGs. Especially, he discovers the optical compensation mechanism for IFOGs, together with his research group. With this mechanism, polarization errors can be efficiently suppressed within dual-polarization IFOGs.

Selected Publications

[1]Z. Wang, Y. Yang, Y. Li, X. Yu, Z. Zhang, and Z. Li. Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes. Opt Express, 2012, 20: 25421-25431

[2]Z. Wang, Y. Yang, P. Lu, Y. Li, D. Zhao, C. Peng, Z. Zhang, and Z. Li. All-Depolarized Interferometric Fiber-Optic Gyroscope Based on Optical Compensation. IEEE Photon J, 2014, 6: 7100208

[3]Z. Wang, Y. Yang, P. Lu, C. Liu, D. Zhao, C. Peng, Z. Zhang, and Z. Li. Optically compensated polarization reciprocity in interferometric fiber-optic gyroscopes. Opt Express, 2014, 22: 4908-4919

[4]Z. Wang, Y. Yang, P. Lu, R. Luo, Y. Li, D. Zhao, C. Peng, and Z. Li. Dual-polarization interferometric fiber-optic gyroscope with an ultra-simple configuration. Opt Lett, 2014, 39: 2463-2466

[5]Y. Yang, Z. Wang, and Z. Li. Optically compensated dual-polarization interferometric fiber-optic gyroscope. Opt Lett, 2012, 37: 2841-2843

[6]Y. Yang, Z. Wang, C. Peng and Z. Li. Unbiasedness of simultaneous independent measurement. Meas Sci Technol, 2012, 23: 085005

[7]Y. Yang, Z. Wang, C. Peng and Z. Li. Multidimensional gray-wavelet processing in interferometric fiber-optic gyroscopes. Meas Sci Technol, 2013, 24: 115203

[8]Y. Li, Z. Wang, Y. Yang, C. Peng, Z. Zhang, and Z. Li. A multi-frequency signal processing method for fiber-optic gyroscopes with square wave modulation. Opt Express, 2014, 22: 1608-1618

[9]Y. Li, Z. Wang, C. Peng, Z. Li. Signal subspace analysis for decoherent processes during interferometric fiber-optic gyroscopes using synchronous adaptive filters. Appl Optics, 2014, 53: 6853-6860

[10]P. Lu, Z. Wang, Y. Yang, D. Zhao, S. Xiong, Y. Li, C. Peng, and Z. Li. Multiple Optical Compensation in Interferometric Fiber-optic Gyroscope for Polarization Nonreciprocal Error Suppression. IEEE Photon J, 2014, 6: 7200608

[11]P. Lu, Z. Wang, R. Luo, D. Zhao, C. Peng, and Z. Li. Polarization nonreciprocity suppression of dual-polarization fiber-optic gyroscope under temperature variation. Opt Lett, 2014, 40: 1826-1829

[12]Z. Wang, Y. Yang, P. Lu, Y. Li, C. Peng, Z. Zhang, and Z. Li. Optical compensation for compressing polarization nonreciprocity induced errors in interferometric fiber-optic gyroscopes. Appl Mech Mater, 2013, 303: 82-85

[14]Z. Wang, C. Wang, Y. Wang, D. Wang, Y. Sun, L. X, and Z. Li, Optical fiber rotation sensing based on inscribed multi-point-coupling resonance loop structure slow light system. Infrar Laser Eng, 2011, 40: 2492-2496

[15]Z. Wang, D. Zhao, Y. Yang, C. Liu, P. Lu, M. Zhang, C. Peng, Z. Zhang, and Z. Li. Minimal Scheme for Optically Compensated Interferometric Fiber-optic Gyroseopes. J Applied Sci, 2013, 13: 1392-1386

[16]Z. Wang, Y. Wang, and Z. Li. Study on transit time online measurement of fiber-optic gyroscope based on narrow pulse modulation. Infrar Laser Eng (Supplement), 2010, 39: 841-844

[17]Z. Wang, X. Wu, C. Peng, R. Hui, X. Luo, Z. Li. and A. Xu, The Trend of Designing Rotation Sensors Based on Highly Dispersive Resonating Structures. Piers Online, 2008, 4(8): 859-865

[18]Y. Yang, Z. Wang, L. Xu, C. Wang, L. Jia, X. Yu, S. Shao, and Z. Li. Highly sensitive rotation sensing based on orthogonal fiber-optic structures. Proc of SPIE, 2011, 8191: 81910

[19]C. Liu, Z. Wang, Q. Cheng, H. Osman, C. Peng, Y. Yang, Z. Zhang, and Z. Li. A new optical fiber acoustic sensor based on air backing mandrel type fiber optic hydrophone. Appl Mech Mater, 2013, 303: 55-58

[20]Y. Li, Z. Wang, D. Zhao, Y. Yang, M. Liu, C. Peng, Z. Zhang, and Z. Li. Balance orthogonal demodulation with combined adaptive optimization for interferometric fiber optic gyroscopes. Appl Mech Mater, 2013, 303: 63-66

[21]Y. Li, Z. Wang, M. Liu, C. Liu, L. Ni, Z. Li, and Y. Zhang. Design and test of prototype attitude control system as telescope stabilizer with fiber optic gyroscopes. 2013 Seventh International Conference on Sensing Technology, IEEE, 2013, 650-654

[22]Y. Yang, S. Xiong, Z. Wang, Y. Li, C. Liu, C. Peng, Z. Zhang, and Z. Li. Improved frequency shifting realization for the delayed self-heterodyne interferometric linewidth measurement. Appl Mech Mater, 2013, 303: 843-846

[23]C. Wang, D. Wang, Z. Wang, P. Lu, L. Xu, X. Yu, Y. Jiang, L. Zhu, and Z. Li. Experimental study on narrow linewidth fiber ring laser based on parallel feedback mechanism. Proc of SPIE, 2011, 8192: 81922

[24]Q. Yu, L. Xu, Z. Wang, P. Lu, C. Wang, D. Wang, Y. Yang, Y. Jiang, L. Zhu, and Z. Li. Novel ring resonator structures generating coupled resonator-induced transparency. Proc of SPIE, 2011, 8191: 81910

[25]L. X, Y. Sun, D. Wang, Z. Wang, and Z. Li. Method of coupled ring resonator's transmission curve detection by using Mach-Zehnder interferometer. Infrar Laser Eng, 2011, 40: 949-952

[26]D. Wang, C. Wang, L. Xu, Y. Wang, X. Yu, Z.Wang, and Z. Li. Fiber laser longitudinal mode selection using common resonant cavity. Infrar Laser Eng, 2011, 40: 1044-1048



Best Sellers



Product Details
  • ISBN-13: 9789811028359
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Edition: 1st ed. 2017
  • Language: English
  • Returnable: Y
  • Spine Width: 8 mm
  • Width: 156 mm
  • ISBN-10: 9811028354
  • Publisher Date: 01 Apr 2017
  • Binding: Hardback
  • Height: 234 mm
  • No of Pages: 93
  • Series Title: Springer Theses
  • Weight: 390 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Dual-Polarization Two-Port Fiber-Optic Gyroscope
Springer -
Dual-Polarization Two-Port Fiber-Optic Gyroscope
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Dual-Polarization Two-Port Fiber-Optic Gyroscope

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!