Dynamic Simulation of Sodium Cooled Fast Reactors
Home > Science, Technology & Agriculture > Energy technology and engineering > Nuclear power and engineering > Dynamic Simulation of Sodium Cooled Fast Reactors
Dynamic Simulation of Sodium Cooled Fast Reactors

Dynamic Simulation of Sodium Cooled Fast Reactors

|
     0     
5
4
3
2
1




International Edition


About the Book

This book provides the basis of simulating a nuclear plant, in understanding the knowledge of how such simulations help in assuring the safety of the plants, thereby protecting the public from accidents. It provides the reader with an in-depth knowledge about modeling the thermal and flow processes in a fast reactor and gives an idea about the different numerical solution methods. The text highlights the application of the simulation to typical sodium-cooled fast reactor. The book • Discusses mathematical modeling of the heat transfer process in a fast reactor cooled by sodium. • Compares different numerical techniques and brings out the best one for the solution of the models. • Provides a methodology of validation based on experiments. • Examines modeling and simulation aspects necessary for the safe design of a fast reactor. • Emphasizes plant dynamics aspects, which is important for relating the interaction between the components in the heat transport systems. • Discusses the application of the models to the design of a sodium-cooled fast reactor It will serve as an ideal reference text for senior undergraduate, graduate students, and academic researchers in the fields of nuclear engineering, mechanical engineering, and power cycle engineering.

Table of Contents:
Chapter 1 Introduction 1.1 General 1.2 Basics of Breeding 1.3 Uranium Utilization 1.4 Components of Fast Reactors 1.5 Overview of Fast Reactor Programs 1.6 Need for Dynamic Simulation 1.7 Design Basis 1.8 Plant Protection System 1.9 Sensors and Response Time 1.10 Scope of Dynamic Studies 1.11 Modelling Development References Assignment Chapter 2 Description of Fast Reactors 2.1 Introduction 2.2 Fast Breeder Test Reactor (FBTR) 2.2.1. Reactor Core 2.2.2 Reactor Assembly 2.2.3. Sodium Systems 2.2.4 Decay Heat Removal 2.2.5 Generating Plant 2.2.6 Instrumentation and Control 2.2.7 Safety 2.3 Prototype Fast Breeder Reactor 2.3.1 Reactor Core 2.3.2 Reactor Assembly 2.3.3 Main Heat Transport System 2.3.4 Steam Water System 2.3.5 Instrumentation and control 2.3.6 Safety 2.4 Neutronic Characteristics of FNRs 2.5 Thermal-Hydraulic Characteristics of FNR References Assignment Chapter 3 Reactor Heat Transfer 3.1 Introduction 3.2 Reactor Core 3.2.1 Core Description 3.2.2 Fuel Pin 3.2.3 Subassembly 3.3 Coolant Selection 3.4 Control Material Selection 3.5 Structural Material Selection 3.6 Heat Generation 3.7 Reactivity Feedback 3.7.1 Doppler Effect 3.7.2 Sodium Density and Void Effects 3.7.3 Fuel Axial Expansion Effect 3.7.4 Structural Expansion 3.7.5 Bowing 3.8 Decay Heat 3.9 Solution Methods 3.9.1 Prompt Jump Approximation 3.9.2 Runge Kutta Method 3.9.3 Kaganove Method 3.9.4 Comparison of different Methods 3.9.5 Solution Methodology 3.10 Heat Transfer in Primary System 3.10.1 Core Thermal Model 3.10.2 Fuel Restructuring 3.10.3 Gap Conductance 3.10.4 Fuel Thermal Model 3.10.5 Solution Technique 3.11 Determination of Peak Temperatures: Hot Spot Analysis 3.12 Core Thermal Model validation in FBTR and SUPER PHENIX 3.13 Mixing of Coolant Streams in Upper Plenum 3.13.1 Solution Technique 3.14 Lower Plenum/Cold Pool 3.15 Grid Plate 3.16 Heat Transfer Correlations for Fuel Rod Bundle References Assignment Chapter 4 IHX Thermal Model 4.1 Introduction 4.2 Experience in PHENIX 4.3 Thermal Model 4.4 Solution Techniques 4.4.1 Nodal Heat Balance Scheme 4.4.2 Finite Differencing Scheme 4.5 Choice of Numerical Scheme 4.5.1 Nodal Heat Balance for Unbalanced Flows 4.5.2 Modified Nodal Heat Balance Scheme (MNHB) 4.6 Heat Transfer Correlations 4.7 Validation References Assignment Chapter 5 Thermal Model of Piping 5.1 Introduction 5.2 Thermal Model 5.3 Solution Methods 5.4 Comparison of Piping Models References Assignment Chapter 6 Sodium Pump 6.1 Introduction 6.2 Electromagnetic Pumps 6.3 Centrifugal Pump 6.3.1 Pump Hydraulic Model 6.3.2 Pump Dynamic Model 6.3.3 Pump Thermal Model References Assignment Chapter 7 Transient Hydraulics Simulation 7.1Introduction 7.2Momentum Equations 7.3Free Level Equations 7.4Core Coolant Flow Distribution 7.5IHX Pressure Drop Correlations 7.5.1 Resistance Coefficient for Cross Flow 7.5.2. Resistance Coefficient for Axial Flow 7.6 Pump Characteristics 7.7 Computational Model 7.8 Validation Studies 7.9 Secondary Circuit Hydraulics 7.9.1 Secondary Hydraulics Model 7.9.2 Natural Convection Flow in Sodium-Validation Studies References Assignment Chapter 8 Steam Generator 8.1 Introduction 8.2 Heat Transfer Mechanisms 8.3 Steam Generator Designs 8.3.1. Conventional Fossil Fuelled Boilers 8.3.1.1 Drum Type 8.3.1.2 Once Through Steam Generators 8.3.2 Sodium Heated Steam Generators 8.4 Thermodynamic Models 8.5 Mathematical Model 8.6 Heat Transfer Correlations 8.6.1 Single Phase Liquid Region 8.6.2 Nucleate Boiling 8.6.3 Dry-Out 8.6.4 Post Dry-Out 8.6.5 Superheated Region 8.6.6 Sodium Side Heat Transfer 8.7 Pressure Drop 8.8 Computational Model 8.8.1Solution of Water /Steam Side Equations 8.8.2 Solution of Sodium, Shell, And Tube Wall Equations 8.9 Steam Generator Model Validation References Assignment Chapter 9 Computer Code Development 9.1 Introduction 9.2 Organization of DYNAM 9.3 Axisymmetric Code STITH-2D 9.4 Comparison of Predictions of DYANA-P And DYANA-HM References Chapter 10 Specifying Sodium Pumps Coast-Down Time 10.1 Introduction 10.2 Impact of Coast Down Time in Loop Type FNR 10.3 Impact of Coast Down Time in Pool Type FNR 10.4 Considerations for Deciding Flow Coast Down Time 10.5 Scram Threshold Vs Coast Down Time 10.5.1. FHT Effect on Maximum Temperatures 10.5.2 FHT to Avoid Scram for Short Power Failure 10.6 Secondary pump FHT 10.7 Primary FHT for Unprotected Loss of Flow References Assignment Chapter 11 Plant Protection System 11.1 Introduction 11.2 Limiting Safety System Settings for FBTR 11.2.1 Safety Signals and Settings 11.2.2 Limiting Safety System Adequacy for FBTR 11.3 Limiting Safety System Settings for PFBR 11.3.1 Design Basis Events 11.3.2 Core Design Safety Limits 11.3.3 Selection of Scram Parameters 11.4 Shutdown System 11.5 Event Analysis References Assignment Chapter 12 Decay Heat Removal System 12.1 Introduction 12.2 Natural Convection Basics 12.3 DHR System Options in FNR 12.3.1 DHR in Primary Sodium 12.3.2 DHR in Secondary Sodium 12.3.3 Steam Generator Auxiliary Cooling System 12.3.4 DHR Through Steam-Water System 12.3.5 Reactor Vessel Auxiliary Cooling System 12.4 DHR in FBTR 12.4.1 Heat Removal By Air In SG Casing 12.4.2 Loss of Offsite and Onsite Power with SG Air Cooling 12.4.3 Loss Of Offsite And Onsite Power Without Reactor Trip 12.5 DHR in PFBR 12.5.1 Thermal Model 12.5.2 Decay Heat Exchanger (DHX) Model 12.5.3 Hot Pool Model 12.5.4 Air Heat Exchanger Model (AHX) Model 12.5.5 Piping 12.5.6 Expansion Tank 12.5.7 Air Stack/Chimney 12.5.8 Hydraulic Model 12.5.9 DHDYN Validation on SADHANA Loop 12.6 Role of Inter Wrapper Flow 12.7 Role of Secondary thermal capacity References Assignment Chapter 13 Modelling of Large Sodium-Water Reaction 13.1 Introduction 13.2 Leak Rate 13.2.1 Water Leak Rate model 13.2.2 Steam leak rate model 13.3 Reaction site dynamics 13.3.1 Spherical bubble model 13.3.2 Columnar bubble model 13.3.3 Solution technique 13.3.4 Validation of Reaction site model 13.4 Sodium Side System Transient 13.5 Discharge Circuit System Transient 13.6 Analysis of Pressure Transients for PFBR 13.7 Failure of a greater number of tubes than design basis leak References Assignment


Best Sellers


Product Details
  • ISBN-13: 9781032254357
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: CRC Press
  • Height: 234 mm
  • No of Pages: 256
  • Width: 156 mm
  • ISBN-10: 1032254351
  • Publisher Date: 18 Nov 2022
  • Binding: Hardback
  • Language: English
  • Weight: 612 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Dynamic Simulation of Sodium Cooled Fast Reactors
Taylor & Francis Ltd -
Dynamic Simulation of Sodium Cooled Fast Reactors
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Dynamic Simulation of Sodium Cooled Fast Reactors

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!