Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications
Home > Science & Mathematics > Physics > Light (optics) > Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications
Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications

Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications


     0     
5
4
3
2
1



International Edition


About the Book

Master's Thesis from the year 2011 in the subject Physics - Applied physics, grade: A, Kenyatta University, course: Master of Science ( Physics), language: English, abstract: In this research an n-type CdxZn1-xS and p-type PbS thin films were optimised for solar cell applications employing chemical bath deposition technique. The thin films were prepared using thiourea and nitrates of cadmium, zinc and lead. Deposition of optimised CdxZn1-xS was done by CBD at 820 C and in alkaline conditions while that of PbS was done at room temperature and both films at normal atmospheric pressure utilizing aqueous conditions. This study concentrated on optimising optical and electrical characterization of the films. Optical constant suitable for photovoltaic applications were sort for and for this purpose a UV VIS IR spectrophotometer 3700 DUV was utilised while the electrical properties were investigated using a four point probe connected to a Keithley 2400 source meter interfaced with computer. The optical band gap of the as deposited CdxZn1-xS films varied from 2.47eV (x =0.6) to 2.72 eV (x =1.0), and transmittance above 79% in the VIS - NIR region for the concentration range of x = 0.6 to 1.0, that is, the band gap increased with increasing Zn concentration of the alloy and Cd06Zn0.4S sample showed the widest band gap. It was obtained that the presence of zinc increased optical band gap. The average extinction coefficients for the as deposited CdxZn1-xS samples were very low revealing that they absorb very little radiation hence a good window layer material. As measured by the four point probe connected to a Keithley 2400 source meter, electrical resistivity increased with increase in Zn in the bath in CdxZn1-xS and a resistivity range of 9.5×101 - 1.22× 102 Ω-cm was obtained. These properties are appropriate for window layers used for photovoltaic cell applications. PbS thin films had a band gap of 0.89 eV and a transmittance of below 55% appropriate for absorber layers of
About the Author: A PhD student at Kenyatta University, Kenya, Holder of Master of Science (Electronics and Instrumentation, Lecturer at Rift Valley Institute of Science and Technology. Formerly serviced as a High School tutor with Kenya Secondary Schools and Part timer lecturer at Kenyatta University. Aged 37 years, married to one wife, Alice Mwango Nyamwange and Blessed with children. A christian by faith professing Seventy Day Adventist doctrines. Works in Nakuru kenya and a member of the famous Nakuru County


Best Sellers



Product Details
  • ISBN-13: 9783656718390
  • Publisher: Grin Publishing
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: Thin film characterization for solar cells
  • Width: 148 mm
  • ISBN-10: 3656718393
  • Publisher Date: 05 Sep 2014
  • Height: 210 mm
  • No of Pages: 118
  • Spine Width: 7 mm
  • Weight: 213 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications
Grin Publishing -
Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Electrical and optical characterization of CdxZn1-xS and PbS thin films for photovoltaic applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!