Engineering Risk Assessment with Subset Simulation
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Production and industrial engineering > Reliability engineering > Engineering Risk Assessment with Subset Simulation
Engineering Risk Assessment with Subset Simulation

Engineering Risk Assessment with Subset Simulation

|
     0     
5
4
3
2
1




Out of Stock


Notify me when this book is in stock
About the Book

This book starts with the basic ideas in uncertainty propagation using Monte Carlo methods and the generation of random variables and stochastic processes for some common distributions encountered in engineering applications. It then introduces a class of powerful simulation techniques called Markov Chain Monte Carlo method (MCMC), an important machinery behind Subset Simulation that allows one to generate samples for investigating rare scenarios in a probabilistically consistent manner. The theory of Subset Simulation is then presented, addressing related practical issues encountered in the actual implementation. The book also introduces the reader to probabilistic failure analysis and reliability-based sensitivity analysis, which are laid out in a context that can be efficiently tackled with Subset Simulation or Monte Carlo simulation in general. The book is supplemented with an Excel VBA code that provides a user-friendly tool for the reader to gain hands-on experience with Monte Carlo simulation. * Presents a powerful simulation method called Subset Simulation for efficient engineering risk assessment and failure and sensitivity analysis * Illustrates examples with MS Excel spreadsheets, allowing readers to gain hands-on experience with Monte Carlo simulation * Covers theoretical fundamentals as well as advanced implementation issues * A companion website is available to include the developments of the software ideas This book is essential reading for graduate students, researchers and engineers interested in applying Monte Carlo methods for risk assessment and reliability based design in various fields such as civil engineering, mechanical engineering, aerospace engineering, electrical engineering and nuclear engineering. Project managers, risk managers and financial engineers dealing with uncertainty effects may also find it useful.

Table of Contents:
About the Authors xiii Preface xv Acknowledgements xvii Nomenclature xix 1 Introduction 1 1.1 Formulation 2 1.2 Context 5 1.3 Extreme Value Theory 5 1.4 Exclusion 6 1.5 Organization of this Book 7 1.6 Remarks on the Use of Risk Analysis 7 1.7 Conventions 8 References 8 2 A Line of Thought 9 2.1 Numerical Integration 10 2.2 Perturbation 10 2.3 Gaussian Approximation 12 2.3.1 Single Design Point 12 2.3.2 Multiple Design Points 14 2.4 First/Second-Order Reliability Method 14 2.4.1 Context 15 2.4.2 Design Point 16 2.4.3 FORM 17 2.4.4 SORM 18 2.4.5 Connection with Gaussian Approximation 22 2.5 Direct Monte Carlo 24 2.5.1 Unbiasedness 25 2.5.2 Mean-Square Convergence 25 2.5.3 Asymptotic Distribution (Central Limit Theorem) 28 2.5.4 Almost Sure Convergence (Strong Law of Large Numbers) 31 2.5.5 Failure Probability Estimation 32 2.5.6 CCDF Perspective 34 2.5.7 Rare Event Problems 38 2.5.8 Variance Reduction by Conditioning 41 2.6 Importance Sampling 44 2.6.1 Optimal Sampling Density 45 2.6.2 Failure Probability Estimation 45 2.6.3 Shifting Distribution 46 2.6.4 Benefits and Side-Effects 48 2.6.5 Bias 50 2.6.6 Curse of Dimension 53 2.6.7 CCDF Perspective 56 2.7 Subset Simulation 58 2.8 Remarks on Reliability Methods 60 2A.1 Appendix: Laplace Type Integrals 61 References 62 3 Simulation of Standard Random Variable and Process 65 3.1 Pseudo-Random Number 65 3.2 Inversion Principle 66 3.2.1 Continuous Random Variable 67 3.2.2 Discrete Random Variables 67 3.3 Mixing Principle 68 3.4 Rejection Principle 69 3.4.1 Acceptance Probability 71 3.5 Samples of Standard Distribution 72 3.6 Dependent Gaussian Variables 78 3.6.1 Cholesky Factorization 78 3.6.2 Eigenvector Factorization 81 3.7 Dependent Non-Gaussian Variables 83 3.7.1 Nataf Transformation 83 3.7.2 Copula 87 3.8 Correlation through Constraint 89 3.8.1 Uniform in Sphere 89 3.8.2 Gaussian on Hyper-plane 92 3.9 Stationary Gaussian Process 95 3.9.1 Autocorrelation Function and Power Spectral Density 95 3.9.2 Discrete-Time Process 99 3.9.3 Sample Autocorrelation Function and Periodogram 100 3.9.4 Time Domain Representation 101 3.9.5 The ARMA Process 103 3.9.6 Frequency Domain Representation 108 3.9.7 Remarks 115 3A.1 Appendix: Variance of Linear System Driven by White Noise 115 3A.2 Appendix: Verification of Spectral Formula 117 References 118 4 Markov Chain Monte Carlo 119 4.1 Problem Context 119 4.2 Metropolis Algorithm 122 4.2.1 Proposal PDF 123 4.2.2 Statistical Properties 123 4.2.3 Detailed Balance 128 4.2.4 Biased Rejection 132 4.2.5 Reversible Chain 134 4.3 Metropolis Hastings Algorithm 134 4.3.1 Detailed Balance 135 4.3.2 Independent Proposal and Importance Sampling 135 4.4 Statistical Estimation 137 4.4.1 Properties of Estimator 137 4.4.2 Chain Correlation 139 4.4.3 Ergodicity 143 4.5 Generation of Conditional Samples 148 4.5.1 Curse of Dimension 149 4.5.2 Independent Component MCMC 152 References 155 5 Subset Simulation 157 5.1 Standard Algorithm 157 5.1.1 Simulation Level 0 (Direct Monte Carlo) 158 5.1.2 Simulation Level i = 1, ,m 1 (MCMC) 159 5.2 Understanding the Algorithm 160 5.2.1 Direct Monte Carlo Indispensible 160 5.2.2 Rare Regime Explored by MCMC 161 5.2.3 Stationary Markov Chain from the Start 161 5.2.4 Multiple Chains 161 5.2.5 Seeds Discarded 162 5.2.6 CCDF Perspective 162 5.2.7 Repeated Samples 162 5.2.8 Uniform Conditional Probabilities 163 5.3 Error Assessment in a Single Run 166 5.3.1 Heuristic Argument 167 5.3.2 Efficiency Over Direct Monte Carlo 169 5.4 Implementation Issues 173 5.4.1 Proposal Distribution 173 5.4.2 Ergodicity 173 5.4.3 Generalizations 174 5.4.4 Level Probability 175 5.5 Analysis of Statistical Properties 179 5.5.1 Random Intervals 180 5.5.2 Random CCDF Values 181 5.5.3 Summary of Results 182 5.5.4 Expectation 183 5.5.5 Variance 185 5.6 Auxiliary Response 190 5.6.1 Statistical Properties 192 5.6.2 Design of Driving Response 194 5.7 Black Swan Events 195 5.7.1 Diagnosis 197 5.8 Applications 199 5.9 Variants 201 References 202 6 Analysis Using Conditional Failure Samples 205 6.1 Probabilistic Failure Analysis 206 6.2 Uncertain Parameter Sensitivity 207 6.3 Conditional Samples from Direct Monte Carlo 208 6.3.1 Conditional Expectation 208 6.3.2 Parameter Sensitivity 210 6.4 Conditional Samples from Subset Simulation 216 6.4.1 Sample Partitioning 217 6.4.2 Conditioning Structure 219 6.4.3 Conditional Expectation 220 6.4.4 Parameter Sensitivity 224 References 231 7 Spreadsheet Implementation 233 7.1 Microsoft Excel and VBA 233 7.1.1 Excel Spreadsheet 234 7.1.2 Illustrative Example Polynomial Function 236 7.1.3 Visual Basic for Applications (VBA) 242 7.1.4 VBA User-Defined Functions 245 7.1.5 VBA Subroutines 247 7.1.6 Macro Recorder 251 7.2 Software Package UPSS 255 7.2.1 Installation in Excel 2003 255 7.2.2 Installation in Excel 2010 258 7.2.3 Software Context 260 7.2.4 Deterministic System Modeling 261 7.2.5 Uncertainty Modeling 262 7.2.6 Uncertainty Propagation 262 7.2.7 Pre-Processing Tools 265 7.2.8 Post-Processing Tools 268 7.3 Tutorial Example Polynomial Function 269 7.3.1 Deterministic System Modeling 270 7.3.2 Uncertainty Modeling 270 7.3.3 Uncertainty Propagation 272 7.3.4 Direct Monte Carlo 274 7.3.5 Subset Simulation 275 7.4 Tutorial Example Slope Stability 278 7.4.1 Problem Context* 278 7.4.2 Deterministic System Modeling 279 7.4.3 Uncertainty Modeling 279 7.4.4 Histogram Tool 281 7.4.5 Uncertainty Propagation 282 7.4.6 CCDF of Driving Variable 286 7.4.7 Auxiliary Variable 286 7.5 Tutorial Example Portal Frame 288 7.5.1 Problem Context* 289 7.5.2 Deterministic System Modeling 290 7.5.3 Uncertainty Modeling 291 7.5.4 Uncertainty Propagation 294 7.5.5 Transforming Standard Normal Random Variables 295 7.5.6 Introducing Correlation 299 References 302 A Appendix: Mathematical Tools 303 A.1 Calculus 303 A.1.1 Lagrange Multiplier Method 303 A.1.2 Asymptotics 304 A.2 Linear Algebra 304 A.2.1 Linear Independence, Span, Basis 304 A.2.2 Orthogonality and Norm 305 A.2.3 Gram Schmidt Procedure 306 A.2.4 Eigenvalue Problem 307 A.2.5 Real Symmetric Matrices 307 A.2.6 Function of Real Symmetric Matrices 308 A.3 Probability Theory 309 A.3.1 Conditional Expectation 309 A.3.2 Conditional Variance Formula 310 A.3.3 Chebyshev s Inequality 310 A.3.4 Jensen s Inequality 310 A.3.5 Modes of Stochastic Convergence 311 Index 313


Best Sellers


Product Details
  • ISBN-13: 9781118398050
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 250 mm
  • No of Pages: 336
  • Weight: 666 gr
  • ISBN-10: 111839805X
  • Publisher Date: 14 Apr 2014
  • Binding: Other digital
  • Language: English
  • Spine Width: 15 mm
  • Width: 150 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Engineering Risk Assessment with Subset Simulation
John Wiley & Sons Inc -
Engineering Risk Assessment with Subset Simulation
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Engineering Risk Assessment with Subset Simulation

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!