Evolutionary Machine Learning Techniques by Seyedali Mirjalili
Home > General > Evolutionary Machine Learning Techniques
Evolutionary Machine Learning Techniques

Evolutionary Machine Learning Techniques


     0     
5
4
3
2
1



International Edition


About the Book

This book provides an in-depth analysis of the current evolutionary machine learning techniques. Discussing the most highly regarded methods for classification, clustering, regression, and prediction, it includes techniques such as support vector machines, extreme learning machines, evolutionary feature selection, artificial neural networks including feed-forward neural networks, multi-layer perceptron, probabilistic neural networks, self-optimizing neural networks, radial basis function networks, recurrent neural networks, spiking neural networks, neuro-fuzzy networks, modular neural networks, physical neural networks, and deep neural networks.

The book provides essential definitions, literature reviews, and the training algorithms for machine learning using classical and modern nature-inspired techniques. It also investigates the pros and cons of classical training algorithms. It features a range of proven and recent nature-inspired algorithms used to train different types of artificial neural networks, including genetic algorithm, ant colony optimization, particle swarm optimization, grey wolf optimizer, whale optimization algorithm, ant lion optimizer, moth flame algorithm, dragonfly algorithm, salp swarm algorithm, multi-verse optimizer, and sine cosine algorithm. The book also covers applications of the improved artificial neural networks to solve classification, clustering, prediction and regression problems in diverse fields.



About the Author:

Dr. Seyedali Mirjalili is a lecturer at Griffith College, Griffith University, and internationally recognised for his advances in nature-inspired artificial intelligence (AI) techniques. He is the author of five books, 100 journal articles, 20 conference papers, and 20 book chapters. With over 10000 citations and H-index of 40, he is one of the most influential AI researchers in the world. From Google Scholar metrics, he is globally the 3rd most cited researcher in Engineering Optimisation and Robust Optimisation using AI techniques. He has been the keynote speaker of several international conferences and is serving as an associate editor of top AI journals including Applied Soft Computing, Applied Intelligence, IEEE Access, Advances in Engineering Software, and Applied Intelligence.

Hossam Faris is a Professor in the Information Technology Department at King Abdullah II School for Information Technology at The University of Jordan, Jordan. Hossam Faris received his B.A. and M.Sc. degrees in computer science from the Yarmouk University and Al-Balqa` Applied University in 2004 and 2008, respectively, in Jordan. He was awarded a full-time competition-based scholarship from the Italian Ministry of Education and Research to peruse his Ph.D. degrees in e-Business at the University of Salento, Italy, where he obtained his Ph.D. degree in 2011. In 2016, he worked as a postdoctoral researcher with the GeNeura team at the Information and Communication Technologies Research Center (CITIC), University of Granada, Spain. His research interests include applied computational intelligence, evolutionary computation, knowledge systems, data mining, semantic web, and ontologies.

Dr. Aljarah is an Associate Professor of BIG Data Mining and Computational Intelligence at The University of Jordan--Department of Information Technology, Jordan. Currently, he is the Director Assistant to International Affairs Unit at The University of Jordan. He obtained the bachelor degree in computer science from the Yarmouk University, Jordan, 2003. He also obtained his master degree in computer science and information systems from the Jordan University of Science and Technology, Jordan, in 2006. He participated in many conferences in the fields of data mining, machine learning, and big data such as CEC, GECCO, NTIT, CSIT, IEEE NABIC, CASON, and BigData Congress. Furthermore, he contributed in many projects in USA such as Vehicle Class Detection System (VCDS), Pavement Analysis Via Vehicle Electronic Telemetry (PAVVET), and Farm Cloud Storage System (CSS) projects. He has published more than 35 papers in refereed international conferences and journals. His research focuses on data mining, machine learning, big data, MapReduce, Hadoop, swarm intelligence, evolutionary computation, social network analysis (SNA), and large-scale distributed algorithms.


Best Sellers



Product Details
  • ISBN-13: 9789813299894
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 286
  • Series Title: Algorithms for Intelligent Systems
  • Sub Title: Algorithms and Applications
  • Width: 156 mm
  • ISBN-10: 9813299894
  • Publisher Date: 25 Nov 2019
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 18 mm
  • Weight: 643 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Evolutionary Machine Learning Techniques
Springer -
Evolutionary Machine Learning Techniques
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Evolutionary Machine Learning Techniques

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!