Fatigue Crack Growth in Rubber Materials -Bookswagon
Home > General > Fatigue Crack Growth in Rubber Materials
Fatigue Crack Growth in Rubber Materials

Fatigue Crack Growth in Rubber Materials


     0     
5
4
3
2
1



International Edition


About the Book

Some Revisions of Fatigue Crack Growth Characteristics of Rubber.- Determining Parametrical Functions Defining the Deformations of a Plane Strain Tensile Rubber Sample.- The effect of polyglycols on the fatigue crack growth of silica filled natural rubber.- The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method.- Critical Plane Analysis of Rubber.- Cavitation Micro-mechanisms in Silica-Filled Styrene-Butadiene Rubber Upon Fatigue and Cyclic Tensile Testing.- New Approaches to Modeling Failure and Fracture of Rubberlike Materials.- Influence of Filler Induced Cracks on the Statistical Lifetime of Rubber: A Review.- Fatigue Life Analysis of Solid Elastomer-Like Polyurethane.- Cavitation in Rubber Vulcanizates Subjected to Constrained Tensile Deformation.- Fatigue Crack Growth vs. Chip and Cut Wear of NR and NR/SBR Blend-Based Rubber Compounds.- Review on the Role of Phase Morphology and Energy Dissipation Around the Crack Tip During Fatigue Crack Propagation of Filler-Reinforced Elastomer Blends.- Methodology Used for Characterizing the Fracture and Fatigue Behavior of Thermoplastic Elastomers.- About the influence of materials parameters on the ultimate and fatigue properties of elastomers.- Influence of Plasticizers Basing on Renewable Sources on the Deformation and Fracture Behaviour of Elastomers.- Fracture and Fatigue Failure Simulation of Polymeric Material at Finite Deformation by the Phase-Field Method and the Material Force Approach.- Viscoelastic Crack Propagation: Review of Theories and Applications.- Dissipative Heating, Fatigue and Fracture Behaviour of Rubber Under Multiaxial Loading.- Determination of the Loading Mode Dependence of the Proportionality Parameter for the Tearing Energy of Embedded Flaws in Elastomers Under Multiaxial Deformations.- Microfocused Beam SAXS and WAXS Mapping at the Crack Tip and Fatigue Crack Propagation in Natural Rubber.
About the Author:
Gert Heinrich graduated from the University in Jena (Germany) in quantum physics in 1973. At the Technical University (TH) Leuna-Merseburg, he finished his doctorate in 1978 in polymer network physics and his Habilitation in 1986 about theory of polymer networks and topological constraints. In 1990 he received a position at the tire manufacturer Continental in Hanover (Germany) as senior research scientist and head of Materials Research. Heinrich continued his academic activities as lecturer at Universities of Hanover and Halle/Wittenberg. In 2002, he was appointed as full professor for "Polymer Materials and Rubber Technology" at the Technical University Dresden and as director of the Institute of Polymer Materials at the Leibniz Institute of Polymer Research Dresden e. V. (IPF). Since 2017 he is Senior Professor. His work has been recognized by several grants and awards, e.g. the George Stafford Whitby Award for distinguished teaching and research from the Rubber Division of the ACS, the Colwyn Medal in UK for outstanding services to the rubber industry; the Carl Dietrich Harries Medal from the German Rubber Society, and the Lifetime Achievement Award from Tire Technology International Magazine. Science ranking (Google Scholar) indicates: h-Index = 69; i10-Index = 363 (19-01-2021).
Reinhold Kipscholl graduated as Dipl.-Ing. in engineering of data processing and electronics. He is active since more than 20 years in leading industrial positions, especially in the field of testing and characterization of materials with respect of their physical behavior. Since 20 years he is General Manager of Coesfeld GmbH & Co. KG (Dortmund), a German Company developing and producing material testing equipment for plastics and elastomers. Since 2012 R. Kipscholl is founder and General Manager of PRL Polymer Research Lab., a Czech Company researching and developing new testing methods for characterization of fracture and wear behavior of rubbers. He has been awarded with the 2018 Fernley H. Bunbury Award (Rubber Division, American Chemical Society). Scopus indicates 10 publications.
Radek Stoček obtained his diploma degree as an engineer in 2005 from the Czech Technical University in Prague and received his Ph.D. in engineering science in 2012 from the Technical University Chemnitz (Germany), working with M. Gehde and parallel with G. Heinrich at IPF Dresden (G). Then he started an industrial career at Polymer Research Lab (PRL), Zlin, Czech Republic, and parallel an independent academic career at the Tomas Bata University (TBU) in Zlin. He finished his Habilitation in 2019. Currently he is holding the two positions as Head of R&D at PRL and Head of the Rubber Department at TBU. His research and scientific interests are focused on characterization of rubber material properties with respect to fatigue and fracture mechanics and on the development of new and advanced testing methodologies, hardware and equipments. One main goal is to optimize industrial rubber products in terms of performance and durability as well as to fasten development cycles and minimizing extensive real rubber product tests before production. His work has been recognized by awards from The Tire Society (USA). R. Stocek is author of 30 publications (according to Scopus) and holds two Utility Models.


Best Sellers



Product Details
  • ISBN-13: 9783030689193
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 491
  • Series Title: Advances in Polymer Science
  • Sub Title: Experiments and Modelling
  • Width: 156 mm
  • ISBN-10: 3030689190
  • Publisher Date: 12 Apr 2021
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 27 mm
  • Weight: 924 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Fatigue Crack Growth in Rubber Materials
Springer International Publishing -
Fatigue Crack Growth in Rubber Materials
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Fatigue Crack Growth in Rubber Materials

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!