Footmarks of Innate Immunity in the Ovary and Cytokeratin-Positive Cells as Potential Dendritic Cells
Home > Medicine > Pre-clinical medicine: basic sciences > Human reproduction, growth & development > Human growth & development > Footmarks of Innate Immunity in the Ovary and Cytokeratin-Positive Cells as Potential Dendritic Cells
Footmarks of Innate Immunity in the Ovary and Cytokeratin-Positive Cells as Potential Dendritic Cells

Footmarks of Innate Immunity in the Ovary and Cytokeratin-Positive Cells as Potential Dendritic Cells


     0     
5
4
3
2
1



International Edition


About the Book

The monograph introduces innate immunity as second authority in the ovary besides the endocrine system. Innate immunity appears to orchestrate follicular atresia, follicle rupture, follicle transformation into a corpus luteum (CL) and CL regression through nonsterile inflammation and tissue repair. The concept is new. It centres on cytokeratin-positive (CK+) cells being recognized as a potential nonlymphoid dendritic cell type (DC). Part I describes morphological aspects of immune privilege starting with areactive hamster ovary implants into the chicken chorioallantois membrane. Follicular atresia and follicle rupture correspond with mild and moderate tissue damage in ovaries of small rodents and rabbits. Superovulations cause severe tissue damage through intraovarian oocyte release with follicle wall remnants in oedema, rupture of vessel walls and thrombosis. The complement system and neuropeptides might play regulatory roles. Part IIa analyzes intact ovaries (cows, human) for the appearance of CK+ cells. In the foetal ovary, sex cords give rise to CK+ cells in primordial follicles. In the adult ovary, CK+ cells are absent in preantral follicles and reappear in mature and regressing follicles. In the CL of early development, steroidogenic CK+ cells build a peripheral zone in the previous granulosa cell layer, and uniformly distribute in the following stages. A microvessel-associated CK+ cell type is seldom found. Part IIb characterizes the morphology and function of CK+ cells in vitro. Isolated from human preovulatory follicles, the epithelioid CK+ granulosa cell subtype regulates TLR4 and CD14 at 36 h of treatment with oxidized lipoprotein (oxLDL, 150 mg/ml); nonapoptotic cell death and the increase of reactive oxygen species occur. In contrast, the CK-negative (CK-) granulosa cell type regulates the lectin-like oxLDL receptor 1 (LOX-1) and survival autophagy under oxLDL stimulation. Isolated from bovine CL, the epithelioid CK+ cell type 1 is disclosed as microvascular cell type with a single nonmotile cilium. The microvascular CK+ type strongly upregulates intercellular contacts under treatment with interferon- (IFN-). In the CK- cell type 5 of granulosa cell -like appearance, IFN- treatment supports cell proliferation, N-cadherin upregulation, and the dramatic increase in major histocompatibility complex II peptides (MHC II) by 80-fold compared to basal levels. Type 5 could have been conversed from the steroidogenic CK+ cell type. We summarize and conclude: CK+ granulosa cells express functionally active TLR4, which sense danger signals like oxidative stress in preovulatory follicles and trigger inflammatory and immunoregulatory pathways. The final outcome regulates follicle rupture and transformation into CL. Luteolysis could start by danger-sensing through the microvascular CK+ type 1 cells and theDC-like type 5 cells both sensitive to IFN-. The future will witness a novel strategy in the therapy of ovarian disorders like anovulations, luteal phase insufficiency, and autoimmune failures


Best Sellers



Product Details
  • ISBN-13: 9783642160769
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Depth: 6
  • Height: 234 mm
  • No of Pages: 110
  • Series Title: Advances in Anatomy, Embryology and Cell Biology
  • Weight: 349 gr
  • ISBN-10: 364216076X
  • Publisher Date: 29 Dec 2010
  • Binding: Paperback
  • Edition: 1
  • Language: English
  • Returnable: Y
  • Spine Width: 8 mm
  • Width: 155 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Footmarks of Innate Immunity in the Ovary and Cytokeratin-Positive Cells as Potential Dendritic Cells
Springer -
Footmarks of Innate Immunity in the Ovary and Cytokeratin-Positive Cells as Potential Dendritic Cells
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Footmarks of Innate Immunity in the Ovary and Cytokeratin-Positive Cells as Potential Dendritic Cells

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!