Generalized Linear Mixed Model by Matthew Kramer
Home > Science & Mathematics > Mathematics > Probability & statistics > Generalized Linear Mixed Model
Generalized Linear Mixed Model

Generalized Linear Mixed Model


     0     
5
4
3
2
1



Available


About the Book

Generalized Linear Mixed Models in the Agricultural and Natural Resources Sciences provides readers with an understanding and appreciation for the design and analysis of mixed models for non-normally distributed data. It is the only publication of its kind directed specifically toward the agricultural and natural resources sciences audience. Readers will especially benefit from the numerous worked examples based on actual experimental data and the discussion of pitfalls associated with incorrect analyses.


About the Author:

Edward Gbur is currently Professor and Interim Director of the Agricultural Statistics Laboratory at the University of Arkansas. Previously he was on the faculty in the Statistics Department at Texas A&M University and was a Mathematical Statistician in the Statistical Research Division at the Census Bureau. He received a Ph.D. in Statistics from The Ohio State University. He is a member and Fellow of the American Statistical Association and a member of the International Biometric Society and the Institute of Mathematical Statistics. His current research interests include experimental design, generalized linear mixed models, stochastic modeling, and agricultural applications of statistics.

Walter Stroup is Professor of Statistics at the University of Nebraska, Lincoln. After receiving his Ph.D. in Statistics from the University of Kentucky in 1979, he joined the Biometry faculty at Nebraska's Institute of Agriculture and Natural Resources. He served as teacher, researcher and consultant until becoming department chair in 2001. In 2003, Biometry was incorporated into a new Department of Statistics at UNL; Walt served as chair from its founding through 2010. He is co-author of SAS for Mixed Models and SAS for Linear Models. He is a member of the International Biometric Society, American Association for the Advancement of Science and a member and Fellow of the American Statistical Association. His interests include design of experiments and statistical modeling.

Kevin S. McCarter is a faculty member in the Department of Experimental Statistics at Louisiana State University. He earned the Bachelors degree with majors in Mathematics and Computer Information Systems from Washburn University, and the Masters and Ph.D. degrees in Statistics from Kansas State University. He has industry experience as an IT professional in banking, accounting, and health care, and as a biostatistician in the pharmaceutical industry. His dissertation research was in the area of survival analysis. His current research interests include predictive modeling, developing and assessing statistical methodology, and applying generalized linear mixed modeling techniques. He has collaborated with researchers from a wide variety of fields including agriculture, biology, education, medicine, and psychology.

Susan Durham is a statistical consultant at Utah State University, collaborating with faculty and graduate students in the Ecology Center, Biology Department, and College of Natural Resources. She earned a Bachelors degree in Zoology at Oklahoma State University and a Masters degree in Applied Statistics at Utah State University. Her interests cover the broad range of research problems that have been brought to her as a statistical consultant.

Mary Christman is currently the lead statistical consultant with MCC Statistical Consulting LLC, which provides statistical expertise for environmental and ecological problems. She is also courtesy professor at the University of Florida (UF). She was on the faculty at UF, University of Maryland, and American University after receiving her PhD in statistics from George Washington University. She is a member of several organizations including the American Statistical Association (ASA), the International Environmetrics Society, and the American Association for the Advancement of Science. She received the 2004 Distinguished Achievement Award from the Section on Statistics and the Environment of the ASA. Her current research interests include linear and non-linear modeling in the presence of correlated error terms, sampling and experimental design, and statistical methodology for ecological and environmental research.

Linda J. Young is Professor of Statistics at the University of Florida. She completed her Ph.D. in Statistics at Oklahoma State University and has previously served on the faculties of Oklahoma State University and the University of Nebraska-Lincoln. Linda has served the profession in a variety of capacities, including President of the Eastern North American Region of the International Biometric Society, Treasurer of the International Biometric Society, Vice-President of the American Statistical Association, and Chair of the Committee of Presidents of Statistical Societies. She has co-authored two books and has more than 100 refereed publications. She is a fellow of the American Association for the Advancement of Science, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute. Her research interests include spatial statistics and statistical modeling.

Mark West is a statistician for the U. S. Department of Agriculture Agricultural Research Service. He received his Ph.D. in Applied Statistics from the University of Alabama in 1989 and has been a statistical consultant in agriculture research ever since beginning his professional career at Auburn University in 1989. His interests include experimental design, statistical computing, computer intensive methods, and generalized linear mixed models.

Matt Kramer is a statistician in the mid-Atlantic area (Beltsville, MD) of the Agricultural Research Service (USDA), where he has worked since 1999. Prior to that, he spent eight years at the Census Bureau in the Statistical Research Division (time series and small area estimation). He received a Masters and Ph.D. from the University of Tennessee. His interests are in basic biological and ecological statistical applications.


Best Sellers



Product Details
  • ISBN-13: 9780891181828
  • Publisher: Amer Society of Agronomy
  • Binding: Hardback
  • Height: 229 mm
  • No of Pages: 304
  • Series Title: Asa, Cssa, and Sssa Books
  • Weight: 616 gr
  • ISBN-10: 0891181822
  • Publisher Date: 22 Jan 2020
  • Depth: 19
  • Language: English
  • Returnable: N
  • Spine Width: 18 mm
  • Width: 152 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Generalized Linear Mixed Model
Amer Society of Agronomy -
Generalized Linear Mixed Model
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Generalized Linear Mixed Model

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!