A Global Kinetic Model for Electron Radiation Belt Formation and Evolution
A Global Kinetic Model for Electron Radiation Belt Formation and Evolution

A Global Kinetic Model for Electron Radiation Belt Formation and Evolution


     0     
5
4
3
2
1



International Edition


About the Book

This thesis focuses on the construction and application of an electron radiation belt kinetic model including various adiabatic and non-adiabatic processes. The terrestrial radiation belt was discovered over 50 years ago and has received a resurgence of interest in recent years. The main drivers of radiation belt research are the fundamental science questions surrounding its complex and dramatic dynamics and particularly its potential hazards posed to space-borne systems. The establishment of physics-based radiation belt models will be able to identify the contributions of various mechanisms, forecast the future radiation belt evolution and then mitigate its adverse space weather effects.

Dr. Su is now an Professor works in Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China.


About the Author:

Dr. Su is now an Associate Professor works in Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, China.

Honors:
Excellent Doctoral Dissertation Award of Chinese Academy of Sciences
Special Prize of the President Scholarship of Chinese Academy of Sciences

Publication list:
1. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., He, Z. G., Shen, C., Shen, C. L., Wang, C. B., Liu, R., Zhang, M., Wang, S., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D. Funsten, H. O., Blake, J. B., and Baker, D. N., Intense duskside lower-band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons, J. Geophys. Res., 119, 4266-4273, 2014.
2. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Zhang, M., Liu, Y., Shen, C., Wang, Y. M., and Wang, S., Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and terrestrial ring current ions, Phys. Plasmas, 21, 052310, 2014.
3. Su, Z. P., Xiao, F. L., Zheng, H. N., He, Z. G., Zhu, H., Zhang, M., Shen, C., Wang, Y. M., Wang, S., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Funsten, H. O., Blake, J. B., and Baker, D. N., Nonstorm-time dynamics of electron radiation belts observed by the Van Allen Probes, Geophys. Res. Lett., 41, 229-235, 2014.
4. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Shen, C., Wang, Y. M., and Wang, S., Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons, J. Geophys. Res., 118, 3188-3202, 2013.
5. Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Shen, C., Wang, Y. M., and Wang, S., Bounce-averaged advection and diffusion coefficients for monochromatic electromagnetic ion cyclotron wave: Comparison between test-particle and quasi-linear models, J. Geophys. Res., 117, A09222, 2012.
6. Su, Z. P., Zong, Q.-G., Yue, C., Wang, Y. F., Zhang, H., and Zheng, H. N., Proton auroral intensification induced by interplanetary shock on 7 November 2004, J. Geophys. Res., 116, A08223, 2011.
7. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions, J. Geophys. Res., 116, A04205, 2011.

8. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event, Geophys. Res. Lett., 38, L06106, 2011.
9. Su, Z. P., Zheng, H. N., Chen, L. X., and Wang, S., Numerical simulations of storm-time outer radiation belt dynamics by wave-particle interactions including cross diffusion, J. Atoms. Sol.-Terres. Phys., 73, 95-105, 2011.
10. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., Combined radial diffusion and adiabatic transport of radiation belt electrons with arbitrary pitch-angles, J. Geophys. Res., 115, A10249, 2010.
11. Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S., STEERB: A three-dimensional code for storm-time evolution of electron radiation belt, J. Geophys. Res., 115, A09208, 2010.
12. Su, Z. P., Zheng, H. N., and Wang, S., Three dimensional simulation of energetic outer zone electron dynamics due to wave-particle interaction and azimuthal advection, J. Geophys. Res., 115, A06203, 2010.
13. Su, Z. P., Zheng, H. N., and Wang, S., A parametric study on the diffuse auroral precipitation by resonant interaction with whistler-mode chorus, J. Geophys. Res., 115, A05219, 2010.
14. Su, Z. P., Zheng, H. N., and Wang, S., Evolution of electron pitch angle distribution due to interactions with whistler-mode chorus following substorm injections, J. Geophys. Res., 114, A08202, 2009.
15. Su, Z. P., Zheng, H. N., and Wang, S., Dynamic evolution of energetic outer zone electrons due to whistler-mode chorus based on a realistic density model, J. Geophys. Res., 114, A07201, 2009.


Best Sellers



Product Details
  • ISBN-13: 9783662466506
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Binding: Hardback
  • Height: 234 mm
  • No of Pages: 106
  • Series Title: Springer Theses
  • Weight: 399 gr
  • ISBN-10: 3662466503
  • Publisher Date: 07 Apr 2015
  • Edition: 2015 ed.
  • Language: English
  • Returnable: Y
  • Spine Width: 8 mm
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A Global Kinetic Model for Electron Radiation Belt Formation and Evolution
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
A Global Kinetic Model for Electron Radiation Belt Formation and Evolution
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A Global Kinetic Model for Electron Radiation Belt Formation and Evolution

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!