Granular Computing Based Machine Learning - Bookswagon UAE
Home > Computer & Internet > Computer science > Artificial intelligence > Expert systems / knowledge-based systems > Granular Computing Based Machine Learning
Granular Computing Based Machine Learning

Granular Computing Based Machine Learning


     0     
5
4
3
2
1



International Edition


About the Book

Introduction, - Traditional Machine Learning, - Semi-supervised Learning through Machine Based Labelling, - Nature Inspired Semi-heuristic Learning, - Fuzzy Classification through Generative Multi-task Learning, - Multi-granularity Semi-random Data Partitioning, - Multi-granularity Rule Learning, - Case Studies, - Con
About the Author: Author 1

Han Liu is currently a Research Associate in Data Science in the School of Computer Science and Informatics at the Cardiff University. He has previously been a Research Associate in Computational Intelligence in the School of Computing at the University of Portsmouth. He received a BSc in Computing from University of Portsmouth in 2011, an MSc in Software Engineering from University of Southampton in 2012, and a PhD in Machine Learning from University of Portsmouth in 2015.

His research interests include data mining, machine learning, rule based systems, granular computing, intelligent systems, fuzzy systems, big data, computational intelligence and applications in cyber security, cyber crime, cyber bullying, cyber hate and pattern recognition.

He published a research monograph with Springer in the third year of his PhD. He also published over 25 papers in the areas such as data mining, machine learning and granular computing. One of his papers was identified as a key scientific article contributing to scientific and engineering research excellence by the selection team at Advances in Engineering and the selection rate is less than 0.1% as indicated. He also has a paper selected as a finalist of Lotfi Zadeh Best Paper Award in the 16th International Conference on Machine Learning and Cybernetics (ICMLC 2017) and has another paper nominated for Lotfi Zadeh Best Paper Award in the 15th International Conference on Machine Learning and Cybernetics (ICMLC 2016).

He has been registered as a reviewer for several established journals, such as IEEE Transactions on Fuzzy Systems, and Information Sciences (Elsevier). He has also recently been a member of the programme committee for the 17th UK Workshop on Computational Intelligence (UKCI 2017), the 16th International Conference on Machine Learning and Cybernetics (ICMLC 2017) and the 2nd IET International Conference on Biomedical Image and Signal Processing (ICBISP 2017). He is a member of IEEE and IET.

Author 2

Mihaela Cocea is currently a Senior Lecturer in the School of Computing at the University of Portsmouth. She holds a BSc in Computer Science, a BSc in Psychology and Education and a MSc in Communication and Human Relations from the University of Iasi, Romania. She also has an MSc by Research in Learning Technologies from the National College of Ireland (2007), a PhD in Computer Science from Birkbeck College, University of London, UK (2011), and a Postgraduate Certificate in Learning and Teaching in Higher Education from the University of Portsmouth (2012).

Her research interests are in the area of Intelligent System, focusing on intelligent techniques using data and knowledge engineering to provide adaptation and personalisation, as well as decision support. She has received funding through: (a) scholarships from the National College of Ireland and Birkbeck College, University of London, UK; (b) an internship through the EU Leonardo da Vinci programme; (b) a mobility fellowship from the European Network of Excellence in Technology Enhanced Learning (STELLARnet); (c) research development funds from the University of Portsmouth and (d) travel grants from EATEL (European Association for Technology Enhanced Learning), User Modeling Inc. and NSF (National Science Foundation).

She has published over 75 peer-reviewed papers and has received a Best Project Award at the Summer School on Personalized e-Learning, Dublin (2006), a Best PhD paper award at the 14th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (2010) and was runner up for the 2011 Best PhD Thesis in the School of Business, Economics & Informatics, Birkbeck College, University of London. She acted as co-chair for the "Architectures, techniques & methodologies for UMAP" track of the 24th ACM Conference on User Modeling, Adaptation and Personalisation (UMAP 2016), the Workshop on Social Media Analysis in conjunction with the 33rd International Conference of the British Computer Society's Specialist Group on Artificial Intelligence (SGAI 2013), and the International Workshop on Sentiment Discovery from Affective Data (SDAD) in conjunction with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2012). She is a member of the IEEE and the IEEE System, Man and Cybernetics Society.


Best Sellers



Product Details
  • ISBN-13: 9783319700571
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 113
  • Series Title: Studies in Big Data
  • Sub Title: A Big Data Processing Approach
  • Width: 156 mm
  • ISBN-10: 331970057X
  • Publisher Date: 23 Nov 2017
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 10 mm
  • Weight: 417 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Granular Computing Based Machine Learning
Springer -
Granular Computing Based Machine Learning
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Granular Computing Based Machine Learning

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!