The Handbook of Computational Social Science is a comprehensive reference source for scholars across multiple disciplines. It outlines key debates in the field, showcasing novel statistical modeling and machine learning methods, and draws from specific case studies to demonstrate the opportunities and challenges in CSS approaches.
The Handbook is divided into two volumes written by outstanding, internationally renowned scholars in the field. The first volume focuses on the scope of computational social science, ethics, and case studies. It covers a range of key issues, including open science, formal modeling, and the social and behavioral sciences. This volume explores major debates, introduces digital trace data, reviews the changing survey landscape, and presents novel examples of computational social science research on sensing social interaction, social robots, bots, sentiment, manipulation, and extremism in social media. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions.
The second volume focuses on foundations and advances in data science, statistical modeling, and machine learning. It covers a range of key issues, including the management of big data in terms of record linkage, streaming, and missing data. Machine learning, agent-based and statistical modeling, as well as data quality in relation to digital-trace and textual data, as well as probability-, non-probability-, and crowdsourced samples represent further foci. The volume not only makes major contributions to the consolidation of this growing research field, but also encourages growth into new directions.
With its broad coverage of perspectives (theoretical, methodological, computational), international scope, and interdisciplinary approach, this important resource is integral reading for advanced undergraduates, postgraduates and researchers engaging with computational methods across the social sciences, as well as those within the scientific and engineering sectors.
About the Author: Uwe Engel is professor at the University of Bremen, Germany where he held a chair in Sociology from 2000 to 2020. From 2008 to 2013, Dr. Engel coordinated the Priority Programme on "Survey Methodology" of the German Research Foundation. His current research focuses on data science, human-robot interaction, and opinion dynamics.
Anabel Quan-Haase is professor of Sociology and Information and Media Studies at Western University and Director of the SocioDigital Media Lab, London, Canada. Her research interests include social media, social networks, life course, social capital, computational social science, and digital inequality/inclusion.
Sunny Xun Liu is a Research Scientist at Stanford Social Media Lab, USA. Her research focuses on the social and psychological effects of social media and AI, social media and well-being, and how the design of social robots impact psychological perceptions.
Lars Lyberg was Head of the Research and Development Department at Statistics Sweden and professor at Stockholm University. He was an elected member of the International Statistical Institute. In 2018, he received the AAPOR Award for Exceptionally Distinguished Achievement.