Integrable Hamiltonian Systems on Complex Lie Groups
Home > Science & Mathematics > Mathematics > Groups & group theory > Integrable Hamiltonian Systems on Complex Lie Groups
Integrable Hamiltonian Systems on Complex Lie Groups

Integrable Hamiltonian Systems on Complex Lie Groups


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
About the Book

This paper is a study of the elastic problems on simply connected manifolds $M_n$ whose orthonormal frame bundle is a Lie group $G$. Such manifolds, called the space forms in the literature on differential geometry, are classified and consist of the Euclidean spaces $\mathbb{E}^n$, the hyperboloids $\mathbb{H}^n$, and the spheres $S^n$, with the corresponding orthonormal frame bundles equal to the Euclidean group of motions $\mathbb{E}^n\rtimes SO_n(\mathbb{R})$, the rotation group $SO_{n+1}(\mathbb{R})$, and the Lorentz group $SO(1,n)$. The manifolds $M_n$ are treated as the symmetric spaces $G/K$ with $K$ isomorphic with $SO_n(R)$. Then the Lie algebra $\mathfrak{g}$ of $G$ admits a Cartan decomposition $\mathfrak{g}=\mathfrak{p}+\mathfrak{k}$ with $\mathfrak{k}$ equal to the Lie algebra of $K$ and $\mathfrak{p}$ equal to the orthogonal comlement $\mathfrak{k}$ relative to the trace form.The elastic problems on $G/K$ concern the solutions $g(t)$ of a left invariant differential systems on $G$ $\textfrac{dg}{dt}(t)=g(t)(A_0+U(t)))$ that minimize the expression $\textfrac{1}{2}\int_0^T (U(t),U(t))\,dt$ subject to the given boundary conditions $g(0)=g_0$, $g(T)=g_1$, over all locally bounded and measurable $\mathfrak{k}$ valued curves $U(t)$ relative to a positive definite quadratic form $(\,, \,)$ where $A_0$ is a fixed matrix in $\mathfrak{p}$. These variational problems fall in two classes, the Euler-Griffiths problems and the problems of Kirchhoff. The Euler-Griffiths elastic problems consist of minimizing the integral $\textfrac{1}{2}\int_0^T\kappa^2(s)\,ds$ with $\kappa (t)$ equal to the geodesic curvature of a curve $x(t)$ in the base manifold $M_n$ with $T$ equal to the Riemannian length of $x$.The curves $x(t)$ in this variational problem are subject to certain initial and terminal boundary conditions. The elastic problems of Kirchhoff is more general than the problems of Euler-Griffiths in the sense that the quadratic form $(\,, \,)$ that defines the functional to be minimized may be independent of the geometric invariants of the projected curves in the base manifold. It is only on two dimensional manifolds that these two problems coincide in which case the solutions curves can be viewed as the non-Euclidean versions of L. Euler elasticae introduced in 174. Each elastic problem defines the appropriate left-invariant Hamiltonian $\mathcal{H}$ on the dual $\mathfrak{g}^*$ of the Lie algebra of $G$ through the Maximum Principle of optimal control. The integral curves of the corresponding Hamiltonian vector field $\vec{\mathcal{H}}$ are called the extremal curves.The paper is essentially concerned with the extremal curves of the Hamiltonian systems associated with the elastic problems. This class of Hamiltonian systems reveals a remarkable fact that the Hamiltonian systems traditionally associated with the movements of the top are invariant subsystems of the Hamiltonian systems associated with the elastic problems. The paper is divided into two parts. The first part of the paper synthesizes ideas from optimal control theory, adapted to variational problems on the principal bundles of Riemannian spaces, and the symplectic geometry of the Lie algebra $\mathfrak{g},$ of $G$, or more precisely, the symplectic structure of the cotangent bundle $T^*G$ of $G$.


Best Sellers



Product Details
  • ISBN-13: 9780821837641
  • Publisher: American Mathematical Society
  • Binding: PAPERBACK
  • Height: 244 mm
  • No of Pages: 132
  • Series Title: Memoirs of the American Mathematical Society
  • Weight: 329 gr
  • ISBN-10: 0821837648
  • Publisher Date: 15 Oct 2005
  • Depth: 13
  • Language: English
  • Returnable: Y
  • Spine Width: 4.06 mm
  • Width: 175 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Integrable Hamiltonian Systems on Complex Lie Groups
American Mathematical Society -
Integrable Hamiltonian Systems on Complex Lie Groups
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Integrable Hamiltonian Systems on Complex Lie Groups

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!