An Introduction to Nuclear Fission by Walter D. Loveland
Home > Science & Mathematics > Physics > Particle & high-energy physics > An Introduction to Nuclear Fission
An Introduction to Nuclear Fission

An Introduction to Nuclear Fission


     0     
5
4
3
2
1



International Edition


About the Book

1. Introduction1.1. Why study fission?1.2. The discovery of fission1.3. The role of women in the development of the field 1.4. Early model of fission: the Bohr and Wheeler paper1.5. Structure of the book
2. Fission Systematics and General Characteristics2.1. Spontaneous and induced fission2.2. Chronology of the fission process2.3. Fission energetics2.4. Fission barriers2.5. Fission isomers2.6. Fragment mass and energy distributions2.7. Neutron distributions
3. Fission Models3.1. The liquid drop model3.2. The Strutinsky shell correction method3.3. Energy surfaces3.4. Transition state theory3.5.
4.1. Mass and charge distributions4.2. Kinetic energy distribution4.3. Angular momentum of fragments4.4. Angular distribution of fragments4.5. Decay of fragments: the Bateman equation
5. Fission Neutrons5.1. Scission and post-scission neutrons5.2. Prompt and delayed neutrons5.3. Neutron yield5.4. Neutron spectrum
6. Fission Gammas6.1. Prompt and delayed gammas6.2. Fission product yields from gamma-ray measurements6.3. Fragment angular momentum deduced from gammas6.4. Average gamma-ray energies and multiplicities6.5. Shape of the gamma-ray spectrum
7. Advanced Topics7.1. The Hartree-Fock approximation7.2. The treatment of pairing in the BCS approximation7.3. Constrained Hartree-Fock+BCS and energy surfaces7.4. The Generator Coordinate Method7.5. Fission dynamics: Semi-classical methods7.6. Fission dynamics: Quantum-mechanical methods7.7. The nucleus at and beyond scission7.8. Future directions in fission theory and experiments

About the Author: Walid Younes received his Ph.D. in nuclear physics from Rutgers University in 1996, and joined the experimental nuclear physics group at the Lawrence Livermore National Laboratory soon after. For the next ten years, he worked principally on the measurement and interpretation of fission cross sections from neutron-induced reactions. In 2006, he made the transition to nuclear theory, studying the quantum many-body problem and its application to describe the nuclear fission process. In addition to numerous publications and presentations on the physics of fission, Dr. Younes co-authored Microscopic Theory of Nuclear Fission in Springer's "Lecture Notes in Physics" series in 2019. He has lectured in summer schools and in the nuclear engineering department at the University of California Berkeley on nuclear physics and fission, where he designed and taught a full-semester course on the physics of fission. Dr. Younes retired from LLNL in 2019, but maintains an active interest in understanding the fission process through measurements and modelling.

Walter D. Loveland is Professor at the department of Chemistry of the Oregon State University, US. He received his PhD in Nuclear Chemistry from the University of Washington after obtaining the SB in Chemistry from MIT. He held postdoctoral positions in Argonne and Oregon State Universities, becoming a faculty member at Oregon State University in 1968. He spent some periods at LBNL, Uppsala, and Argonne as visiting scientist. Prof. Loveland has worked on various aspects of nuclear chemistry, such as the study of heavy ion induced reactions, fast neutron induced fission, environmental chemistry and nuclear chemistry education. He is the author of several nuclear chemistry textbooks. He has published more than 250 scientific articles in the open, refereed literature, given 62 talks at APS meetings, and over 300 talks at professional meetings. He is NSF Sigma Xi (Washington), Tartar, ACS, and AAAS fellow. He was awarded the Sigma Xi Award for Research, Gillfillan award, Beaver Champion Award (Oregon State), and G.T. Seaborg Award.


Best Sellers



Product Details
  • ISBN-13: 9783030845919
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 208
  • Series Title: Graduate Texts in Physics
  • Weight: 521 gr
  • ISBN-10: 3030845915
  • Publisher Date: 18 Dec 2021
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 13 mm
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
An Introduction to Nuclear Fission
Springer International Publishing -
An Introduction to Nuclear Fission
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

An Introduction to Nuclear Fission

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!