Large-Scale Graph Analysis: System, Algorithm and Optimization
Home > Science & Mathematics > Physics > Applied physics > Large-Scale Graph Analysis: System, Algorithm and Optimization
Large-Scale Graph Analysis: System, Algorithm and Optimization

Large-Scale Graph Analysis: System, Algorithm and Optimization


     0     
5
4
3
2
1



International Edition


About the Book

1. Introduction.- 2. Graph Computing Systems for Large-Scale Graph Analysis.- 3. Partition-Aware Graph Computing System.- 4. Efficient Parallel Subgraph Enumeration.- 5. Efficient Parallel Graph Extraction.- 6. Efficient Parallel Cohesive Subgraph Detection.- 7. Conclusions.
About the Author:

Yingxia Shao is a Research Associate Professor at the School of Computer Science, Beijing University of Posts and Telecommunications. His research interests include large-scale graph analysis, knowledge graph management and representation, and parallel computing. He obtained his PhD from Peking University in 2016, under the supervision of Prof. Bin Cui. He worked with Prof. Lei Chen as a visiting scholar at HKUST in 2013 and 2014. He has served in the Technical Program Committee of various international conferences including VLDB, KDD, AAAI, IJCAI, DASFAA, BigData, APWeb-WAIM and MDM. He is serving as a reviewer of international journals including VLDBJ, DAPD, WWWJ, DSE. He was selected for a Google PhD Fellowship (2014), MSRA Fellowship (2014), PhD National Scholarship of MOE China (2014), ACM SIGMOD China Doctoral Dissertation Award (2017). He is currently a member of the ACM, IEEE, CCF, and China Database technical committee.

Bin Cui is a Professor at the School of EECS and Director of the Institute of Network Computing and Information Systems, at Peking University. He obtained his B.Sc. from Xi'an Jiaotong University (Pilot Class) in 1996, and Ph.D. from National University of Singapore in 2004 respectively. From 2004 to 2006, he worked as a Research Fellow in Singapore-MIT Alliance. His research interests include database system architectures, query and index techniques, and big data management and mining. He has served in the Technical Program Committee of various international conferences including SIGMOD, VLDB, ICDE and KDD, and as Vice PC Chair of ICDE 2011, Demo Co-Chair of ICDE 2014, Area Chair of VLDB 2014, PC Co-Chair of APWeb 2015 and WAIM 2016. He is currently serving as a Trustee Board Member of VLDB Endowment, is on the the Editorial Board of VLDB Journal, Distributed and Parallel Databases Journal, and Information Systems, and was formerly an associate editor of IEEE Transactions on Knowledge and Data Engineering (TKDE, 2009-2013). He was selected for a Microsoft Young Professorship award (MSRA 2008), CCF Young Scientist award (2009), Second Prize of Natural Science Award of MOE China (2014), and appointed a Cheung Kong distinguished Professor by the MOE in 2016. He is a senior member of the IEEE, member of the ACM and distinguished member of the CCF.

Lei Chen received the BS degree in computer science and engineering from Tianjin University, Tianjin, China, in 1994, the MA degree from Asian Institute of Technology, Bangkok, Thailand, in 1997, and the Ph.D. degree in computer science from the University of Waterloo, Canada, in 2005. He is currently a Full Professor at the Department of Computer Science and Engineering, Hong Kong University of Science and Technology. His research interests include crowdsourcing, social media analysis, probabilistic and uncertain databases, and privacy-preserved data publishing. The system developed by his team won the excellent demonstration award at the VLDB 2014. He was selected for the SIGMOD Test-of-Time Award in 2015. He is PC Track chairs for SIGMOD 2014, VLDB 2014, ICDE 2012, CIKM 2012, SIGMM 2011. He has served as PC members for SIGMOD, VLDB, ICDE, SIGMM, and WWW. Currently, he serves as PC co-chair for VLDB 2019, Editor-in-Chief of VLDB Journal and associate editor-in-chief of IEEE Transactions on Data and Knowledge Engineering. He is an IEEE fellow, a member of the VLDB endowment and an ACM Distinguished Scientist.



Best Sellers



Product Details
  • ISBN-13: 9789811539305
  • Publisher: National Natural Science Foundation of China
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 146
  • Series Title: Big Data Management
  • Weight: 286 gr
  • ISBN-10: 9811539308
  • Publisher Date: 02 Jul 2021
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Spine Width: 9 mm
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Large-Scale Graph Analysis: System, Algorithm and Optimization
National Natural Science Foundation of China -
Large-Scale Graph Analysis: System, Algorithm and Optimization
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Large-Scale Graph Analysis: System, Algorithm and Optimization

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!