Large-Scale Machine Learning in the Earth Sciences by Ashok N. Srivastava
Home > Environment & Geography > Earth sciences > Volcanology & seismology > Large-Scale Machine Learning in the Earth Sciences
Large-Scale Machine Learning in the Earth Sciences

Large-Scale Machine Learning in the Earth Sciences


     0     
5
4
3
2
1



International Edition


About the Book

From the Foreword:

While large-scale machine learning and data mining have greatly impacted a range of commercial applications, their use in the field of Earth sciences is still in the early stages. This book, edited by Ashok

Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser, serves as an outstanding resource for anyone interested in the opportunities and challenges for the machine learning community in analyzing these data sets to answer questions of urgent societal interest...I hope that this book will inspire more computer scientists to focus on environmental applications, and Earth scientists to seek collaborations with researchers in machine learning and data mining to advance the frontiers in Earth sciences.

--Vipin Kumar, University of Minnesota

Large-Scale Machine Learning in the Earth Sciences provides researchers and practitioners with a broad overview of some of the key challenges in the intersection of Earth science, computer science, statistics, and related fields. It explores a wide range of topics and provides a compilation of recent research in the application of machine learning in the field of Earth Science.

Making predictions based on observational data is a theme of the book, and the book includes chapters on the use of network science to understand and discover teleconnections in extreme climate and weather events, as well as using structured estimation in high dimensions. The use of ensemble machine learning models to combine predictions of global climate models using information from spatial and temporal patterns is also explored.

The second part of the book features a discussion on statistical downscaling in climate with state-of-the-art scalable machine learning, as well as an overview of methods to understand and predict the proliferation of biological species due to changes in environmental conditions. The problem of using large-scale machine learning to study the formation of tornadoes is also explored in depth.

The last part of the book covers the use of deep learning algorithms to classify images that have very high resolution, as well as the unmixing of spectral signals in remote sensing images of land cover. The authors also apply long-tail distributions to geoscience resources, in the final chapter of the book.


About the Author:

Ashok N. Srivastava, Ph.D. is the VP of Data and Artificial Intelligence Systems and the Chief Data Scientist at Verizon. He leads a new research and development center in Palo Alto focusing on building products and technologies powered by big data, large-scale machine learning, and analytics. He is an Adjunct Professor at Stanford University in the Electrical Engineering Department and is the Editor-in-Chief of the AIAA Journal of Aerospace Information Systems. Dr. Srivastava is a Fellow of the IEEE, the American Association for the Advancement of Science (AAAS), and the American Institute of Aeronautics and Astronautics (AIAA).

He is the author of over 100 research articles, has edited 4 books, has 5 patents awarded, and over 30 under file. He has won numerous awards including the IEEE Computer Society Technical Achievement Award for pioneering contributions to intelligent information systems, the NASA Exceptional Achievement Medal for contributions to state-of-the-art data mining and analysis, the NASA Honor Award for Outstanding Leadership, the NASA Distinguished Performance Award, several NASA Group Achievement Awards, the Distinguished Engineering Alumni Award from UC Boulder, the IBM Golden Circle Award, and the Department of Education Merit Fellowship.

Dr. Ramakrishna Nemani is a senior Earth scientist with the NASA Advanced Supercomputing division at Ames Research Center, California, USA. He leads NASA's efforts in ecological forecasting to understand the impacts of the impending climatic changes on Earth's ecosystems and in collaborative computing, bringing scientists together with big data and supercomputing to provide insights into how our planet is changing and the forces underlying such changes.

He has published over 190 papers on a variety of topics including remote sensing, global ecology, ecological forecasting, climatology and scientific computing with over 28000 citations. He served on the science teams of several missions including Landsat-8, NPP, EOS/MODIS, ALOS-2 and GCOM-C. He has received numerous awards from NASA including the exceptional scientific achievement medal in 2008, exceptional achievement medal in 2011, outstanding leadership medal in 2012 and eight group achievement awards.

Karsten Steinhaeuser, Ph.D. is a Research Scientist affiliated with the Department of Computer Science & Engineering at the University of Minnesota and a Data Scientist with Progeny Systems Corporation. His research centers around data mining and machine learning, in particular construction and analysis of complex networks, with applications in diverse domains including climate, ecology, social networks, time series analysis, and computer vision. He is actively involved in shaping an emerging research area called climate informatics, which lies at the intersection of computer science and climate sciences, and his interests are more generally in interdisciplinary research and scientific problems relating to climate and sustainability.

Dr. Steinhaeuser has been awarded one patent and has authored several book chapters as well as numerous peer reviewed articles and papers on these topics. His work has been recognized with multiple awards including two Oak Ridge National Laboratory Significant Event Awards for Novel Analyses of the Simulation Results from the CCSM 3.0 Climate Model and Science Support for a Climate Change War Game and Follow-Up Support to the US Department of Defense.


Best Sellers



Product Details
  • ISBN-13: 9780367573232
  • Publisher: Taylor and Francis
  • Publisher Imprint: CRC Press
  • Height: 251 mm
  • No of Pages: 238
  • Series Title: Chapman & Hall/CRC Data Mining and Knowledge Discovery
  • Weight: 558 gr
  • ISBN-10: 0367573237
  • Publisher Date: 02 Jul 2020
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Spine Width: 10 mm
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Large-Scale Machine Learning in the Earth Sciences
Taylor and Francis -
Large-Scale Machine Learning in the Earth Sciences
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Large-Scale Machine Learning in the Earth Sciences

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!