Machine Learning in Medical Imaging at Bookstore UAE
Home > Medicine > Other branches of medicine > Medical imaging > Ultrasonics > Machine Learning in Medical Imaging
Machine Learning in Medical Imaging

Machine Learning in Medical Imaging


     0     
5
4
3
2
1



International Edition


About the Book

From Large to Small Organ Segmentation in CT Using Regional Context.- Motion Corruption Detection in Breast DCE-MRI.- Detection and Localization of Drosophila Egg Chambers in Microscopy Images.- Growing a Random Forest with Fuzzy Spatial Features for Fully Automatic Artery-specific Coronary Calcium Scoring.- Atlas of Classifiers for Brain MRI Segmentation.- Dictionary Learning and Sparse Coding-based Denoising for High-Resolution Task Functional Connectivity MRI Analysis.- Yet Another ADNI Machine Learning Paper? Paving The Way Towards Fully-reproducible Research on Classification of Alzheimer's Disease.- Multi-Factorial Age Estimation from Skeletal and Dental MRI Volumes.- Automatic Classification of Proximal Femur Fractures Based on Attention Models.- Joint Supervoxel Classification Forest for Weakly-Supervised Organ Segmentation.- Accurate and Consistent Hippocampus Segmentation Through Convolutional LSTM and View Ensemble.- STAR: Spatio-Temporal Architecture for Super-Resolution in Low-Dose CT Perfusion.- Classification of Alzheimer's Disease by Cascaded Convolutional Neural Networks Using PET Images.- Finding Dense Supervoxel Correspondence of Cone-Beam Computed Tomography Images.- Multi-Scale Volumetric ConvNet with Nested Residual Connections for Segmentation of Anterior Cranial Base.- Feature Learning and Fusion of Multimodality Neuroimaging and Genetic Data for Multi-Status Dementia Diagnosis.- 3D Convolutional Neural Networks with Graph Refinement for Airway Segmentation Using Incomplete Data Labels.- Efficient Groupwise Registration for Brain MRI by Fast Initialization.- Sparse Multi-View Task-centralized Learning for ASD Diagnosis.- Inter-Subject Similarity Guided Brain Network Modelling for MCI Diagnosis.- Scalable and Fault Tolerant Platform for Distributed Learning on Private Medical Data.- Triple-Crossing 2.5D Convolutional Neural Network for Detecting Neuronal Arbours in 3D Microscopic Images.- Longitudinally-Consistent Parcellation of Infant Population Cortical Surfaces Based on Functional Connectivity.- Gradient Boosted Trees for Corrective Learning.- Self-paced Convolutional Neural Network for Computer Aided Detection in Medical Imaging Analysis.- A Point Says a Lot: An Interactive Segmentation Method for MR Prostate via One-Point Labeling.- Collage CNN for Renal Cell Carcinoma Detection from CT.- Aggregating Deep Convolutional Features for Melanoma Recognition in Dermoscopy Images.- Localizing Cardiac Structures in Fetal Heart Ultrasound Video.- Deformable Registration Through Learning of Context-Specific Metric Aggregation.- Segmentation of Craniomaxillofacial Bony Structures from MRI with a 3D Deep-learning Based Cascade Framework.- 3D U-net with Multi-Level Deep Supervision: Fully Automatic Segmentation of Proximal Femur in 3D MR Images.- Indecisive Trees for Classification and Prediction of Knee Osteoarthritis.- Whole Brain Segmentation and Labeling from CT using synthetic MR Images.- Structural Connectivity Guided Sparse Effective Connectivity for MCI Identification.- Fusion of High-order and Low-order Effective Connectivity Networks for MCI Classification.- Novel Effective Connectivity Network Inference for MCI Identification.- Reconstruction of Thin-Slice Medical Images Using Generative Adversarial Network.- Neural Network Convolution (NNC) for Converting Ultra-Low-Dose to "Virtual" High-Dose CT Images.- Deep-Fext: Deep Feature Extraction for Vessel Segmentation and Centerline Prediction.- Product Space Decompositions for Continuous Representations of Brain Connectivity.- Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks.- Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging.- Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks.


Best Sellers



Product Details
  • ISBN-13: 9783319673882
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Edition: Lecture Notes in Computer Science
  • Language: English
  • Returnable: Y
  • Sub Title: 8th International Workshop, MLMI 2017, Held in Conjunction with Miccai 2017, Quebec City, Qc, Canada, September 10, 2017, Proceedings
  • Width: 156 mm
  • ISBN-10: 3319673882
  • Publisher Date: 16 Oct 2017
  • Binding: Paperback
  • Height: 234 mm
  • No of Pages: 391
  • Spine Width: 21 mm
  • Weight: 621 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning in Medical Imaging
Springer -
Machine Learning in Medical Imaging
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning in Medical Imaging

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!