Machine Learning Meets Quantum Physics by Klaus-Robert Muller
Home > Science & Mathematics > Physics > Relativity physics > Machine Learning Meets Quantum Physics
Machine Learning Meets Quantum Physics

Machine Learning Meets Quantum Physics


     0     
5
4
3
2
1



Available


About the Book

Introduction to Material Modeling.- Kernel Methods for Quantum Chemistry.- Introduction to Neural Networks.- Building nonparametric n-body force fields using Gaussian process regression.- Machine-learning of atomic-scale properties based on physical principles.- Quantum Machine Learning with Response Operators in Chemical Compound Space.- Physical extrapolation of quantum observables by generalization with Gaussian Processes.- Message Passing Neural Networks.- Learning representations of molecules and materials with atomistic neural networks.- Molecular Dynamics with Neural Network Potentials.- High-Dimensional Neural Network Potentials for Atomistic Simulations.- Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights.- Active learning and Uncertainty Estimation.- Machine Learning for Molecular Dynamics on Long Timescales.- Database-driven High-Throughput Calculations and Machine Learning Models for Materials Design.- Polymer Genome: A polymer informatics platform to accelerate polymer discovery.- Bayesian Optimization in Materials Science.- Recommender Systems for Materials Discovery.- Generative Models for Automatic Chemical Design.


About the Author:

Kristof T. Schütt studied computer science at the Technische Universität Berlin where he received the MSc. in 2012 and the Ph.D. degree in 2018.

During his doctoral studies in the machine learning group of TU Berlin and at the Berlin Big Data Center, his research interests has been representation learning of atomistic systems, in particular the development of interpretable neural networks for applications in quantum chemistry.

Dr. Schütt has continued this research in a postdoctoral position at the Berlin Center for Machine Learning.


Stefan Chmiela is a postdoc researcher in the Machine Learning group at Technische Universität Berlin, where he obtained his Doctor degree in computer science in 2019.

His inter-disciplinary research revolves around developing efficient machine learning methods to approximate the many-body problem, without unraveling its full combinatorial complexity. A particular focus lies on the description of atomic interactions in quantum chemistry, under consideration of the natural invariants that restrict a system's degrees of freedom.

O. Anatole von Lilienfeld is Associate Professor of Physical Chemistry at the University of Basel. Research in his laboratory deals with the development of improved methods for first principles based sampling of chemical compound space using quantum mechanics, super computers, Big Data, and machine learning.

Previously, he was an associate professor at the Free University of Brussels. From 2013 to 2015 he was a Swiss National Science Foundation professor at the University of Basel. He worked for Argonne and Sandia National Laboratories, and from 2007 to 2010 he was a distinguished Harry S. Truman Fellow at Sandia National Laboratories, after postdoctoral work at New York University and at the University of California Los Angeles. In 2005, he was awarded a PhD in computational chemistry from EPF Lausanne. His diploma thesis work was done at ETH Zürich and the University of Cambridge. He studied chemistry at ETH Zürich, the Ecole de Chimie Polymers et Materiaux in Strasbourg, and the University of Leipzig.

He is editor in chief of the IOP journal "Machine Learning: Science and Technology", has been awarded the Feynman Prize in Nanotechnology, and is an ERC consolidator grantee.


Alexandre Tkatchenko is a Professor of Theoretical Chemical Physics at the University of Luxembourg and Visiting Professor at the Berlin Big Data Center. He obtained his bachelor degree in Computer Science and a Ph.D. in Physical Chemistry at the Universidad Autonoma Metropolitana in Mexico City.

Between 2008 and 2010, he was an Alexander von Humboldt Fellow at the Fritz Haber Institute of the Max Planck Society in Berlin.

Between 2011 and 2016, he led an independent research group at the same institute.

Tkatchenko has given more than 230 plenary/keynote/invited talks, seminars and colloquia worldwide, published more than 150 articles in peer-reviewed academic journals (h-index=57), and serves on the editorial boards of Physical Review Letters (APS) and Science Advances (AAAS).

He received a number of awards, including elected Fellow of the American Physical Society, the Gerhard Ertl Young Investigator Award of the German Physical Society, and two flagship grants from the European Research Council (ERC): a Starting Grant in 2011 and a Consolidator Grant in 2017.

His group pushes the boundaries of quantum mechanics, statistical mechanics, and machine learning to develop efficient methods to enable accurate modeling and obtain new insights into complex materials.


Koji Tsuda received B.E., M.E., and Ph.D degrees from Kyoto University, Japan, in 1994, 1995, and 1998, respectively. Subsequently, he joined former Electrotechnical Laboratory (ETL), Tsukuba, Japan, as Research Scientist. When ETL was reorganized as AIST in 2001, he joined newly established Computational Biology Research Center, Tokyo, Japan.

In 2000-2001, he worked at GMD FIRST (currently Fraunhofer FIRST) in Berlin, Germany, as Visiting Scientist.

In 2003-2004 and 2006-2008, he worked at Max Planck Institute for Biological Cybernetics, Tübingen, Germany, first as Research Scientist and later as Project Leader.

Currently, he is Professor at Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo. He is also affiliated with National Institute of Material Science (NIMS) and RIKEN Center for Advanced Intelligence Project.

His current research interests include machine learning, computational biology and materials informatics.


Klaus-Robert Müller studied physics in Karlsruhe, Germany, from 1984 to 1989, and received the Ph.D. degree in computer science from Technische Universität Karlsruhe, Karlsruhe, in 1992. After completing a postdoctoral position at GMD FIRST, Berlin, Germany, he was a Research Fellow with The University of Tokyo, Tokyo, Japan, from 1994 to 1995. In 1995, he founded the Intelligent Data Analysis Group, GMD-FIRST (later Fraunhofer FIRST), and directed it until 2008. From 1999 to 2006, he was a Professor with the University of Potsdam, Potsdam Germany. He has been a Professor of computer science with Technische Universität Berlin, Berlin, since 2006; at the same time, he is co-directing the Berlin Big Data Center and directing the Berlin Center for Machine Learning.

His current research interests include intelligent data analysis, machine learning, deep learning, and machine learning for the sciences (brain-computer interfaces, quantum chemistry, cancer).

Dr. Müller was a recipient of the 1999 Olympus Prize by the German Pattern Recognition Society, DAGM, and he received the SEL Alcatel Communication Award in 2006, the Science Prize of Berlin awarded by the Governing Mayor of Berlin in 2014, and the Vodafone Innovation Award in 2017.

In 2012, he was elected as a member of the German National Academy of Sciences Leopoldina, and in 2017, a member of the Berlin Brandenburg Academy of sciences, and an External Scientific Member of the Max Planck Society.

He has published numerous papers and holds several patents (GS > 67000, h-index = 112).


Best Sellers



Product Details
  • ISBN-13: 9783030402440
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 467
  • Series Title: Lecture Notes in Physics
  • Weight: 725 gr
  • ISBN-10: 3030402444
  • Publisher Date: 04 Jun 2020
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Spine Width: 25 mm
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning Meets Quantum Physics
Springer International Publishing -
Machine Learning Meets Quantum Physics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning Meets Quantum Physics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!