Machine Learning, Optimization, and Data Science - Bookswagon
Home > Computer & Internet > Databases > Information retrieval > Machine Learning, Optimization, and Data Science
Machine Learning, Optimization, and Data Science

Machine Learning, Optimization, and Data Science


     0     
5
4
3
2
1



International Edition


About the Book

Deep Neural Network Ensembles.- Driver Distraction Detection Using Deep Neural Network.- Deep Learning Algorithms for Complex Pattern Recognition in Ultrasonic Sensors Arrays.- An Information Analysis Approach into Feature Understanding of Convolutional Deep Neural Networks.- Stochastic Weight Matrix-based Regularization Methods for Deep Neural Networks.- Quantitative and Ontology-Based Comparison of Explanations for Image Classification.- About generative aspects of Variational Autoencoders.- Adapted Random Survival Forest for Histograms to Analyze NOx Sensor Failure in Heavy Trucks.- Incoherent submatrix selection via approximate independence sets in scalar product graphs.- LIA: A Label-Independent Algorithm for Feature Selection for Supervised Learning.- Relationship Estimation Metrics for Binary SoC Data.- Network Alignment using Graphlet Signature and High Order Proximity.- Effect of Market Spread over Reinforcement Learning based Market Maker.- A Beam Search for the Longest Common Subsequence Problem Guided by a Novel Approximate Expected Length Calculation.- An Adaptive Parameter Free Particle Swarm Optimization Algorithm for the Permutation Flowshop Scheduling Problem.- The measure of regular relations recognition applied to the supervised classification task.- Simple and Accurate classifi cation method based on Class Association Rules performs well on well-known datasets.- Analyses of Multi-collection Corpora via Compound Topic Modeling.- Text mining with constrained tensor decomposition.- The induction problem: a machine learning vindication argument.- Geospatial Dimension in Association Rule Mining: The Case Study of the Amazon Charcoal Tree.- On Probabilistic k-Richness of the k-Means Algorithms.- Using clustering for supervised feature selection to detect relevant features.- A Structural Theorem for Center-Based Clustering in High-Dimensional Euclidean Space.- Modification of the k-MXT Algorithm and Its Application to the Geotagged Data Clustering.- CoPASample: A Heuristics based Covariance Preserving Data Augmentation.- Active Matrix Completion for Algorithm Selection.- A Framework for Multi- delity Modeling in Global Optimization Approaches.- Performance Evaluation of Local Surrogate Models in Bilevel Optimization.- BowTie - a deep learning feedforward neural network for sentiment analysis.- To What Extent Can Text Classifiation Help with Making Inferences About Students' Understanding.- Combinatorial Learning in Traffic Management.- Cartesian Genetic Programming with Guided and Single Active Mutations for Designing Combinational Logic Circuits.- Designing an Optimal and Resilient iBGP Overlay with extended ORRTD.- GRASP Heuristics for the Stochastic Weighted Graph Fragmentation Problem.- Uniformly Most-Reliable Graphs and Antiholes.- Merging Quality Estimation for Binary Decision Diagrams with Binary Classfi ers.- Directed Acyclic Graph Reconstruction Leveraging Prior Partial Ordering Information.- Learning Scale and Shift-Invariant Dictionary for Sparse Representation.- Robust kernelized Bayesian matrix factorization for video background/foreground separation.- Parameter Optimization of Polynomial Kernel SVM from miniCV.- Analysing the Over t of the auto-sklearn Automated Machine Learning Tool.- A New Baseline for Automated Hyper-Parameter Optimization.- Optimal trade-o between sample size and precision of supervision for the xed effects panel data model.- Restaurant Health Inspections and Crime Statistics Predict the Real Estate Market in New York City.- Load Forecasting in District Heating Networks: Model Comparison on a Real-World Case Study.- A Chained Neural Network Model for Photovoltaic Power Forecast.- Trading-o Data Fit and Complexity in Training Gaussian Processes with Multiple Kernels.- Designing Combinational Circuits Using a Multi-objective Cartesian Genetic Programming with Adaptive Population Size.- Multi-Task Learning by Pareto Optimality Nicosia.- Vital prognosis of patients in intensiv


Best Sellers



Product Details
  • ISBN-13: 9783030375980
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 772
  • Spine Width: 40 mm
  • Weight: 1151 gr
  • ISBN-10: 3030375986
  • Publisher Date: 14 Feb 2020
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: 5th International Conference, Lod 2019, Siena, Italy, September 10-13, 2019, Proceedings
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning, Optimization, and Data Science
Springer International Publishing -
Machine Learning, Optimization, and Data Science
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning, Optimization, and Data Science

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!