Machine Learning with PySpark Book by Pramod Singh
Home > Computer & Internet > Computer programming / software development > Machine Learning with PySpark
Machine Learning with PySpark

Machine Learning with PySpark


     0     
5
4
3
2
1



International Edition


About the Book

Chapter 1: Introduction to Spark 3.1

Chapter Goal: The book's opening chapter introduces the readers to latest changes in PySpark and updates to the framework. This chapter covers the different components of Spark ecosystem. The chapter doubles up as an introduction to the book's format, including explanation of formatting practices, pointers to the book's accompanying codebase online, and support contact information. The chapter sets readers' expectations in terms of the content and structure of the rest of the book. This chapter provides the audience with a set of required libraries and code/data download information so that the user is able to set up their environment appropriately.

No of pages -30

Sub -Topics

1. Data status

2. Apache Spark evolution

3. Apache Spark fundamentals

4. Spark components

5. Setting up Spark 3.1


Chapter 2: Manage Data with PySpark

Chapter Goal:

This chapter covers the steps right from reading the data, pre-processing and cleaning for machine learning purpose. The chapter showcases the steps to build end to end data handling pipelines to transform and create features for machine learning. It covers simple way to use Koalas in order to leverage pandas in a distributed way in Spark.It also covers the method to automate the data scripts in order to run schedules data jobs using Airflow.

No of pages:50

Sub - Topics

1. Data ingestion

2. Data cleaning

3. Data transformation

4. End- to end data pipelines

5. Data processing using koalas in Spark on Pandas DataFrame

6. Automate data workflow using Airflow


Chapter 3: Introduction to Machine Learning

Chapter Goal:

This chapter introduces the readers to basic fundamentals of machine learning. This chapter covers different categories of machine learning and different stages in the machine learning lifecycle. It highlights the method to extract information related to model interpretation to understand the reasoning behind model predictions in PySpark .

No of pages: 25

Sub - Topics:

1. Supervised machine learning

2. Unsupervised machine learning

3. Model interpretation

4. Machine learning lifecycle


Chapter 4: Linear Regression with PySpark

Chapter Goal:

This chapter covers the fundamentals of linear regression for readers. This chapter then showcases the steps to build feature engineering pipeline and fitting a regression model using PySpark latest machine learning library

No of pages:20

Sub - Topics:

1. Introduction to linear regression

2. Feature engineering in PySpark

3. Model training

4. End-to end pipeline for model prediction


Chapter 5: Logistic Regression with PySpark

Chapter Goal:

This chapter covers the fundamentals of logistic regression for readers. This chapter then showcases the steps to build feature engineering pipeline and fitting a logistic regression model using PySpark machine learning library on a customer dataset

No of pages:25

1. Introduction to logistic regression

2. Feature engineering in PySpark

3. Model training

4. End-to end pipeline for model prediction


Chapter 6: Ensembling with Pyspark

Chapter Goal:

This chapter covers the fundamentals of ensembling methods including bagging, boosting and stacking. This chapter then showcases strengths of ensembling methods over other machine learning techniques. In the final part -the steps to build feature engineering pipeline and fitting random forest model using PySpark Machine learning library are covered

No of pages:30

1. Introduction to ensembling methods

2. Feature engineering in PySpark


Best Sellers



Product Details
  • ISBN-13: 9781484277768
  • Publisher: Apress
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: With Natural Language Processing and Recommender Systems
  • Width: 178 mm
  • ISBN-10: 1484277767
  • Publisher Date: 09 Dec 2021
  • Height: 254 mm
  • No of Pages: 240
  • Spine Width: 13 mm
  • Weight: 476 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning with PySpark
Apress -
Machine Learning with PySpark
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning with PySpark

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!