Machine Learning Techniques for Medical Diagnosis
Home > General > Machine Learning Techniques for Medical Diagnosis
Machine Learning Techniques for Medical Diagnosis

Machine Learning Techniques for Medical Diagnosis


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
About the Book

The advancements in computing and information storage technology have led to the generation of a vast volume of data in the medical field. Within this data lies valuable information that, if extracted, can greatly enhance decision-making processes in healthcare. However, manually analyzing large medical datasets is nearly impossible. Therefore, research on mining medical data has been rapidly growing over the past few decades. Extracting knowledge automatically from medical data aids medical professionals in early diagnosis and treatment of high-risk diseases. Early detection of life-threatening illnesses like cancer, diabetes, and heart diseases is crucial for saving lives and reducing treatment costs. In recent times, the global outbreak of Covid-19 has placed an even greater responsibility on the machine learning community to improve the detection and treatment of this devastating disease. Machine learning, including automated disease prognosis and diagnosis, can assist healthcare personnel in coping with the mounting pressures, particularly in the current scenario. The need for machine learning algorithms to mine knowledge from medical data cannot be emphasized enough. Machine learning algorithms have the potential to revolutionize the medical field, impacting areas such as diagnosis, prognosis, and clinical decision-making. These algorithms model relationships and patterns within the data using techniques such as classification, regression, clustering, association mining, and hybrid models. The algorithms go through three stages: preprocessing, data modeling, and post-processing. Preprocessing involves preparing the raw data by eliminating noise, cleaning, reducing, and integrating data. Data modeling entails constructing models based on the preprocessed input, extracting patterns, and utilizing them effectively. Post-processing involves evaluating the performance of the extracted patterns or models using relevant metrics. Classification algorithms have been extensively researched for predictive tasks in medical applications. They operate in two phases: the training phase, where the classifier is trained using a training dataset, and the classification/prediction phase, where the model is used to predict instances that were not encountered during training. The performance of a classification algorithm is assessed on a test dataset. Classification algorithms have been widely employed in disease diagnosis using medical data and images. This research presents a comprehensive framework for evaluating the performance of disease diagnosis, addressing the issue of class imbalance in a single and multi-objective framework through the proposal of a Genetic Algorithm (GA) / Multi-Objective Genetic Algorithm (MOGA). Additionally, it applies Convolutional Neural Networks (CNN) to diagnose Covid-19 from X-ray images and predict protein functions.


Best Sellers



Product Details
  • ISBN-13: 9781916706392
  • Publisher: Shine Publishers
  • Binding: Paperback
  • Height: 229 mm
  • No of Pages: 168
  • Spine Width: 9 mm
  • Width: 152 mm
  • ISBN-10: 1916706398
  • Publisher Date: 08 Jul 2023
  • Edition: Large type / large print edition
  • Language: English
  • Returnable: Y
  • Weight: 286 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning Techniques for Medical Diagnosis
Shine Publishers -
Machine Learning Techniques for Medical Diagnosis
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning Techniques for Medical Diagnosis

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!