Medical Image Computing and Computer Assisted Intervention - MICCAI 2021
Home > Medicine > Other branches of medicine > Medical imaging > Ultrasonics > Medical Image Computing and Computer Assisted Intervention - MICCAI 2021
Medical Image Computing and Computer Assisted Intervention - MICCAI 2021

Medical Image Computing and Computer Assisted Intervention - MICCAI 2021


     0     
5
4
3
2
1



International Edition


About the Book

Machine Learning - Self-Supervised Learning.- SSLP: Spatial Guided Self-supervised Learning on Pathological Images.- Segmentation of Left Atrial MR Images via Self-supervised Semi-supervised Meta-learning.- Deformed2Self: Self-Supervised Denoising for Dynamic Medical Imaging.- Imbalance-Aware Self-Supervised Learning for 3D Radiomic Representations.- Self-supervised visual representation learning for histopathological images.- Contrastive Learning with Continuous Proxy Meta-Data For 3D MRI Classification.- Sli2Vol: Annotate a 3D Volume from a Single Slice with Self-Supervised Learning.- Self-Supervised Longitudinal Neighbourhood Embedding.- Self-Supervised Multi-Modal Alignment For Whole Body Medical Imaging.- SimTriplet: Simple Triplet Representation Learning with a Single GPU.- Lesion-based Contrastive Learning for Diabetic Retinopathy Grading from Fundus Images.- SAR: Scale-Aware Restoration Learning for 3D Tumor Segmentation.- Self-Supervised Correction Learning for Semi-Supervised Biomedical Image Segmentation.- SpineGEM: A Hybrid-Supervised Model Generation Strategy Enabling Accurate Spine Disease Classification with a Small Training Dataset.- Contrastive Learning of Relative Position Regression for One-Shot Object Localization in 3D Medical Images.- Topological Learning and Its Application to Multimodal Brain Network Integration.- One-Shot Medical Landmark Detection.- Implicit field learning for unsupervised anomaly detection in medical images.- Dual-Consistency Semi-Supervised Learning with Uncertainty Quantification for COVID-19 Lesion Segmentation from CT Images.- Contrastive Pre-training and Representation Distillation for Medical Visual Question Answering Based on Radiology Images.- Positional Contrastive Learning for Volumetric Medical Image Segmentation.- Longitudinal self-supervision to disentangle inter-patient variability from disease progression.- Self-Supervised Vessel Enhancement Using Flow-Based Consistencies.- Unsupervised Contrastive Learning of Radiomics and Deep Features for Label-Efficient Tumor Classification.- Learning 4D Infant Cortical Surface Atlas with Unsupervised Spherical Networks.- Multimodal Representation Learning via Maximization of Local Mutual Information.- Inter-Regional High-level Relation Learning from Functional Connectivity via Self-Supervision.- Machine Learning - Semi-Supervised Learning.- Semi-supervised Left Atrium Segmentation with Mutual Consistency Training.- Semi-supervised Meta-learning with Disentanglement for Domain-generalised Medical Image Segmentation.- Efficient Semi-Supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency.- Few-Shot Domain Adaptation with Polymorphic Transformers.- Lesion Segmentation and RECIST Diameter Prediction via Click-driven Attention and Dual-path Connection.- Reciprocal Learning for Semi-supervised Segmentation.- Disentangled Sequential Graph Autoencoder for Preclinical Alzheimer's Disease Characterizations from ADNI Study.- POPCORN: Progressive Pseudo-labeling with Consistency Regularization and Neighboring.- 3D Semantic Mapping from Arthroscopy using Out-of-distribution Pose and Depth and In-distribution Segmentation Training.- Semi-Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation.- Implicit Neural Distance Representation for Unsupervised and Supervised Classification of Complex Anatomies.- 3D Graph-S2Net: Shape-Aware Self-Ensembling Network for Semi-Supervised Segmentation with Bilateral Graph Convolution.- Duo-SegNet: Adversarial Dual-Views for Semi-Supervised Medical Image Segmentation.- Neighbor Matching for Semi-supervised Learning.- Tripled-uncertainty Guided Mean Teacher model for Semi-supervised Medical Image Segmentation.- Learning with Noise: Mask-guided Attention Model for Weakly Supervised Nuclei Segmentation.- Order-Guided Disentangled Representation Learning for Ulcerative Colitis Classification with Limited Lab


Best Sellers



Product Details
  • ISBN-13: 9783030871956
  • Publisher: Springer Nature Switzerland AG
  • Binding: Paperback
  • Language: English
  • Returnable: N
  • Sub Title: 24th International Conference, Strasbourg, France, September 27-October 1, 2021, Proceedings, Part II
  • Width: 156 mm
  • ISBN-10: 3030871959
  • Publisher Date: 24 Sep 2021
  • Height: 234 mm
  • No of Pages: 702
  • Spine Width: 36 mm
  • Weight: 1019 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Medical Image Computing and Computer Assisted Intervention - MICCAI 2021
Springer Nature Switzerland AG -
Medical Image Computing and Computer Assisted Intervention - MICCAI 2021
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Medical Image Computing and Computer Assisted Intervention - MICCAI 2021

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!