Micromechanics and Nanosimulation of Metals and Composites
Home > Technology & Engineering > Mechanical engineering & materials > Mechanical engineering > Tribology (friction & lubrication) > Micromechanics and Nanosimulation of Metals and Composites
Micromechanics and Nanosimulation of Metals and Composites

Micromechanics and Nanosimulation of Metals and Composites


     0     
5
4
3
2
1



International Edition


About the Book

The strength of metallic materials determines the usability and reliability of all the machines, tools and equipment around us. Yet, the question about which mechanisms control the strength and damage resistance of materials and how they can be optimised remains largely unanswered. How do real, heterogeneous ma- rials deform and fail? Why can a small modification of the microstructure increase the strength and damage resistance of materials manifold? How can the strength of heterogeneous materials be predicted? The purpose of this book is to present different experimental and computational analysis methods of micromechanics of damage and strength of materials and to demonstrate their applications to various micromechanical problems. This book summarizes at a glance some of the publications of the Computational Mechanics Group at the IMWF/MPA Stuttgart, dealing with atomistic, micro- and meso- chanical modelling and experimental analysis of strength and damage of metallic materials. In chapter 1, the micromechanisms of damage and fracture in different groups of materials are investigated experimentally, using direct observations and inverse analysis. The interaction of microstructural elements with the evolving damage is studied in these experiments. Chapter 2 presents different approaches to the - cromechanical simulation of composite materials: embedded unit cells, multiphase finite elements and multiparticle unit cells. Examples of the application of these models to the analysis of deformation and damage in different materials are given. Chapter 3 deals with the methods of numerical modelling of damage evolution and crack growth in heterogeneous materials.
About the Author:

Siegfried Schmauder

Professor Dr. Siegfried Schmauder is currently a Professor of Materials Science and Strength of Materials, at the University of Stuttgart, Germany. He graduated in Mathematics from the University of Stuttgart in 1981, and received his Dr. rer. nat. degree from the same University in 1988. After his work as a research group leader at the Max-Planck-Insitute for Metals Research and postdoctoral research stays at the .Tokyo and at the University of California at Santa Barbara (UCSB), USA, he accepted an offer to become a Professor at the State Materials testing Agency (MPA), University of Stuttgart. He is an Editor-in-Chief of the Journal Computational Materials Science, and author of more than 300 research papers in the field of nano- and micromechanics.

Leon Mishnaevsky Jr.

Leon Mishnaevsky Jr. is a Senior Scientist at the Risø National Laboratory, Denmark. Prior to joining Risø, he worked as a research scientist and later as a Heisenberg Fellow at the University of Stuttgart, and at the Darmstadt University of Technology. LM received his Dr. -Ing. Habil. degree in Mechanics from the Darmstadt University of Technology, Germany, and his doctorate from the USSR Academy of Sciences. He has held visiting professor/visiting scholar positions at M.I.T. and Rutgers (USA), University of Tokyo (Japan), China University of Mining and Technology (China) and Ecole Nationale Superieure d'Arts et Metiers (France). He published books on "Computational mesomechanics of composites" and "Damage and fracture in heterogeneous materials", and over 100 research papers in different areas of computational mechanics of materials, micromechanics and mechanical engineering.


Best Sellers



Product Details
  • ISBN-13: 9783540786771
  • Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • Binding: Hardback
  • Edition: 2009
  • Language: English
  • Returnable: N
  • Spine Width: 25 mm
  • Weight: 843 gr
  • ISBN-10: 3540786775
  • Publisher Date: 01 Dec 2008
  • Depth: 25
  • Height: 234 mm
  • No of Pages: 440
  • Series Title: English
  • Sub Title: Advanced Methods and Theoretical Concepts
  • Width: 163 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Micromechanics and Nanosimulation of Metals and Composites
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG -
Micromechanics and Nanosimulation of Metals and Composites
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Micromechanics and Nanosimulation of Metals and Composites

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!