Model-Based Clustering, Classification, and Density Estimation Using mclust in R
Model-Based Clustering, Classification, and Density Estimation Using mclust in R

Model-Based Clustering, Classification, and Density Estimation Using mclust in R


     0     
5
4
3
2
1



International Edition


About the Book

Model-based clustering and classification methods provide a systematic statistical approach to clustering, classification, and density estimation via mixture modeling. The model-based framework allows the problems of choosing or developing an appropriate clustering or classification method to be understood within the context of statistical modeling. The mclust package for the statistical environment R is a widely adopted platform implementing these model-based strategies. The package includes both summary and visual functionality, complementing procedures for estimating and choosing models.

Key features of the book:

  • An introduction to the model-based approach and the mclust R package
  • A detailed description of mclust and the underlying modeling strategies
  • An extensive set of examples, color plots, and figures along with the R code for reproducing them
  • Supported by a companion website, including the R code to reproduce the examples and figures presented in the book, errata, and other supplementary material

Model-Based Clustering, Classification, and Density Estimation Using mclust in R is accessible to quantitatively trained students and researchers with a basic understanding of statistical methods, including inference and computing. In addition to serving as a reference manual for mclust, the book will be particularly useful to those wishing to employ these model-based techniques in research or applications in statistics, data science, clinical research, social science, and many other disciplines.
About the Author:

Luca ScruccaAssociate Professor of Statistics at Università degli Studi di Perugia, his research interests include: mixture models, model-based clustering and classification, statistical learning, dimension reduction methods, genetic and evolutionary algorithms. He is currently Associate Editor for the Journal of Statistical Software and Statistics and Computing. He has developed and he is the maintainer of several high profile R packages available on The Comprehensive R Archive Network (CRAN).

Chris FraleyMost recently a lead research staff member at Tableau, she previously held research positions in Statistics at the University of Washington and at Insightful from its early days as Statistical Sciences. She has contributed to computational methods in a number of areas of applied statistics, and is the principal author of several widely-used R packages. She was the originator (at Statistical Sciences) of numerical functions such as nlminb that have long been available in the R core stats package.

T. Brendan MurphyProfessor of Statistics at University College Dublin, his research interests include: model-based clustering, classification, network modeling and latent variable modeling. He is interested in applications in social science, political science, medicine, food science and biology. He served as Associate Editor for the journal Statistics and Computing, he is currently Editor for the Annals of Applied Statistics and Associate Editor for Statistical Analysis and Data Mining.

Adrian Raftery
Boeing International Professor of Statistics and Sociology, and Adjunct Professor of Atmospheric Sciences at the University of Washington, Seattle. He is also a faculty affiliate of the Center for Statistics and the Social Sciences and the Center for Studies in Demography and Ecology at University of Washington. He was one of the founding researchers in model-based clustering, having published in the area since 1984. His research interests include: model-based clustering, Bayesian statistics, social network analysis and statistical demography. He is interested in applications in social, environmental, biological and health sciences. He is a member of the U.S. National Academy of Sciences and was identified by Thomson-Reuter as the most cited researcher in mathematics in the world for the decade 1995--2005. He served as Editor of the Journal of the American Statistical Association (JASA).


Best Sellers



Product Details
  • ISBN-13: 9781032234960
  • Publisher: Taylor & Francis Ltd
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Weight: 603 gr
  • ISBN-10: 1032234962
  • Publisher Date: 19 Apr 2023
  • Height: 234 mm
  • No of Pages: 288
  • Spine Width: 18 mm
  • Width: 156 mm


Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Model-Based Clustering, Classification, and Density Estimation Using mclust in R
Taylor & Francis Ltd -
Model-Based Clustering, Classification, and Density Estimation Using mclust in R
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Model-Based Clustering, Classification, and Density Estimation Using mclust in R

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!