Modeling Coastal Hypoxia by Kenneth Rose at Bookstore UAE
Modeling Coastal Hypoxia

Modeling Coastal Hypoxia


     0     
5
4
3
2
1



International Edition


About the Book

Preface1. Numerical experiment of stratification induced by diurnal solar heating over the Louisiana shelf2. Physical Drivers of the Circulation and Thermal Regime Impacting Seasonal Hypoxia in Green Bay, Lake Michigan3. Interannual variation in stratification over the Texas-Louisiana Continental Shelf and Effects on Seasonal Hypoxia4. A Reduced Complexity, Hybrid Empirical-Mechanistic Model of Eutrophication and Hypoxia in Shallow Marine Ecosystems5. Modeling Physical and Biogeochemical Controls on Dissolved Oxygen in Chesapeake Bay: Lessons Learned from Simple and Complex Approaches6. Modeling Hypoxia and its Ecological Consequences in Chesapeake Bay7. Modeling River-Induced Phosphorus Limitation in the Context of Coastal Hypoxia8. Predicted Effects of Climate Change on Northern Gulf of Mexico Hypoxia9. Oregon Shelf Hypoxia Modeling10. Comparing Default Movement Algorithms for Individual Fish Avoidance of Hypoxia in the Gulf of Mexico11. Hypoxia Effects Within an Intraguild Predation Food Web of Mnemiopsis leidyi ctenophores, larval fish, and copepods.12. Simulating the Effects of Hypoxia on Bay Anchovy in the Chesapeake Bay Using Coupled Hydrodynamic, Water Quality, and Individual-Based Fish Models13. Simulation of the Population-Level Responses of Fish to Hypoxia: Should We Expect Sampling to Detect Responses?14. Using Ecosystem Modeling to Determine Hypoxia Effect on Fish and Fisheries15. Numerical Modeling of Hypoxia and its Effects: Synthesis and Going Forward
About the Author:

Dr. Dubravko Justic is Texaco Distinguished Professor in the Department of Oceanography and Coastal Sciences at Louisiana State University (LSU). Previously, he was Eric L. Abraham Distinguished Professor in Louisiana Environmental Studies and Director of LSU's Coastal Ecology Institute. His research interests include ecosystem modeling, coastal eutrophication, hypoxia, and potential impacts of climate change on coastal ecosystems. He has studied extensively low oxygen zones in the northern Adriatic Sea and northern Gulf of Mexico and has employed various types of numerical simulation models to describe controls of environmental factors on hypoxia and predict the consequences of management actions. He is presently working on characterizing connectivity among wetland, estuarine and shelf ecosystems in the northern Gulf of Mexico and evaluating tradeoffs associated with different Mississippi River management alternatives.

Dr. Kenneth Rose is Professor in the Department of Oceanography and Coastal Sciences, and Associate Dean for Research in the College of the Coast and Environment, at Louisiana State University. He will soon be joining the faculty at Horn Point Laboratory, part of the University of Maryland Center for Environmental Science, as the Franz Merrick Professor in Sustainable Ecosystem Restoration. Dr. Rose's research centers on using mathematical and computer simulation modeling to predict and better understand fish population and food web dynamics in estuaries, lakes, reservoirs, and oceans. He was recently awarded the Award of Excellence (for lifetime achievement) from the American Fisheries Society. He has been a member of multiple steering and advisory committees providing scientific guidance and oversight, including several National Academy of Sciences' committees. Dr. Rose has published over 150 papers on topics related to ecological and fisheries modeling and analysis, and has served on multiple editorial boards. He is presently working on the scaling of hypoxia effects from individual fish to the population level.

Dr. Robert Hetland is a Professor in the Department of Oceanography, Texas A&M University. His research focuses on understanding and predicting circulation in buoyancy driven flows in estuaries and the coastal ocean. Dr. Hetland's primary research tool is the Regional Ocean Modeling System (ROMS) which he uses to perform numerical simulations of coastal and estuarine circulation, with applications that include oil spill trajectory prediction, harmful algal bloom formation, and coastal hypoxia. Dr. Hetland's simulations of circulation over the Texas-Louisiana shelf have provided new insights into the mechanisms that cause seasonal hypoxia in that region. Dr. Hetland is an Editor for the Journal of Geophysical Research.

Dr. Katja Fennel is Professor in the Department of Oceanography at Dalhousie University. As head of the Marine Environmental Modeling Group (http: //memg.ocean.dal.ca), she leads the development of marine ecosystem and biogeochemical models at Dalhousie. For over two decades, Dr. Fennel has developed and applied numerical models of marine ecosystems and biogeochemistry with particular focus on continental shelf systems and the cycling of nitrogen, carbon and oxygen. In addition to implementing biogeochemical models, Dr. Fennel has developed and applied methods for the assimilation of observations into these models in order to improve their predictive capabilities. She serves as co-editor-in-chief of the high-impact journal Biogeosciences, and has served on the editorial boards of three other scientific journals and on several international science advisory bodies including the IMBER/LOICZ Continental Margins Task Team and the CLIVAR Working Group on Ocean Model Development. Currently she is science team member of GODAE OceanView, co-chairs the GODAE Marine Ecosystem Analysis and Prediction Task Team, and serves on the science advisory boards of the Copernicus Marine Environment Monitoring Service in Europe, the Ocean Frontier Institute at Dalhousie, and the international Biogeochemical Argo steering committee.



Best Sellers



Product Details
  • ISBN-13: 9783319545691
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Edition: 1st ed. 2017
  • Language: English
  • Returnable: Y
  • Spine Width: 25 mm
  • Weight: 852 gr
  • ISBN-10: 3319545698
  • Publisher Date: 11 May 2017
  • Binding: Hardback
  • Height: 234 mm
  • No of Pages: 433
  • Series Title: English
  • Sub Title: Numerical Simulations of Patterns, Controls and Effects of Dissolved Oxygen Dynamics
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Modeling Coastal Hypoxia
Springer -
Modeling Coastal Hypoxia
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Modeling Coastal Hypoxia

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!