Models of Tree and Stand Dynamics by Harry T. Valentine
Home > Science & Mathematics > Biology, life sciences > Life sciences: general issues > Xenobiotics > Models of Tree and Stand Dynamics
Models of Tree and Stand Dynamics

Models of Tree and Stand Dynamics


     0     
5
4
3
2
1



International Edition


About the Book

Preface.- List of symbols.- 1. Introduction.- 1.1. Introduction.- 1.2. Focus of this book.- 1.3. Dynamic models.- 1.4. Raison d'être.- 1.5. Hierarchy.- 1.6. Model resolution.- 1.7. Modeling approaches.- 1.8. Growth.- 1.8.1. Tree growth.- 1.8.2. Stand growth.- 1.8.3. Instantaneous rates of change.- 1.9. Carbon-balance models.- 1.10. Solving a model with R.- 1.10.1. Documentation & brief model description.- 1.11. Exercises.- 1.12. Suggested reading.- 2. Descriptive Models.- 2.1. Descriptive growth models.- 2.1.1. Gompertz model.- 2.1.2. Logistic model.- 2.1.3. Bertalanffy model.- 2.1.4. Similarities of the classic models.- 2.2. Garcia's general model.- 2.2.1. Solution.- 2.2.2. Scaling.- 2.3. Saturating responses.- 2.3.1. Mitscherlich model.- 2.3.2. Hyperbolas.- 2.3.3. Numerical switch.- 2.4. An empirical crown model.- 2.4.1. Crown rise.- 2.4.2. Height growth.- 2.4.3. Change in spacing and stand density.- 2.4.4. R script.- 2.5. Exercises.- 2.6. Suggested reading.- 3. Carbon Balance.- 3.1. Photosynthesis is the source of growth.- 3.2. Basic carbon balance of trees and stands.- 3.3. Stand-level feedbacks.- 3.3.1. Shading and photosynthesis.- 3.3.2. Nitrogen limitation.- 3.4. Tree-level feedbacks.- 3.4.1. Allocation.- 3.4.2. Self-shading.- 3.4.3. Hydraulic limitation.- 3.4.4. Respiration.- 3.4.5. Summary.- 3.5. Problems.- 4. Tree Structure.- 4.1. Introduction.- 4.2. Allometry.- 4.2.1. Allometry of trees.- 4.3. Pipe model.- 4.3.1. Basic definitions.- 4.3.2. Pipe model for tree-level variables.- 4.3.3. Fine roots.- 4.3.4. Biomass of active pipes.- 4.3.5. Disused pipes.- 4.3.6. Biomass estimation using the pipe model.- 4.4. Height-to-diameter ratios: Greenhill scaling.- 4.4.1. Vertical biomass density.- 4.4.2. Greenhill scaling.- 4.5. Fractal trees.- 4.5.1. Menger's sponge.- 4.5.2. Branching patterns and fractal foliage.- 4.5.3. Allometry and fractals.- 4.5.4. Allometry in pipe model trees with fractal foliage.- 4.6. Models of crown geometry.- 4.6.1. Models of foliage distribution for light interception.- 4.6.2. Crown architecture models.- 4.7. Summary.- 4.8. Exercises.- 5. Carbon Balance and Structure.- 5.1. Combining the carbon balance and structure.- 5.1.1. Results from the pipe model.- 5.2. Model of tree dynamics.- 5.2.1. Production and loss.- 5.2.2. Height growth rate and allocation fractions.- 5.2.3. Net growth rates.- 5.3. Cross-sectional growth.- 5.4. Summary of the model.- 5.5. R script.- 5.5.1. Setup.- 5.5.2. Solution.- 5.5.3. The stem profile.- 5.5.4. Response variables and graphs.- 5.5.5. Results.- 5.5.6. Sensitivity.- 5.6. Redux and reuse.- 5.7. Exercises.- 6. Competition.- 6.1. Introduction.- 6.2. Setting the scene: Effects of competition on growth on and mortality.- 6.2.1. Resource acquisition.- 6.2.2. Acclimations.- 6.2.3. Suppression and self-thinning.- 6.2.4. Implications for modelling competition.- 6.3. Simple stand-level approaches to competition.- 6.3.1. The Yoda rule.- 6.3.2. The Reineke rule.- 6.3.3. Summary.- 6.4. Models with competition for light.- 6.4.1. Competition for light in gap models.- 6.4.2. Models with photosynthesis.- 6.4.3. Summary.- 6.5. Models with structural plasticity.- 6.5.1. A crown-length rule.- 6.5.2. A mean-tree model with crown rise and self-thinning.- 6.5.3. A tree-level model with crown rise and self-thinning.- 6.5.4. Summary.- 6.6. Spatial approaches.- 6.6.1. Spatial crown-rise model.- 6.6.2. Perfect aggregation.- 6.6.3. Perfect Plasticity Approximation.- 6.7. Exercises.- 7. Tree structure revisited: Eco-evolutionary models.- 7.1. Introduction.- 7.2. Rationale for optimization.- 7.3. Crown structure.- 7.3.1. The evolutionary significance of crown architecture for carbon allocation.- 7.3.2. Crown allometry.- 7.3.3. Optimal crown shape and foliage density.- 7.3.4. Crown structure: Summary.- 7.4. Stem form.- 7.5. Co-allocation of carbon and nitrogen.- 7.5.1. Functional balance.- 7.5.2. Functional balance during exponential growth.- 7.5.3. Optimal canopy density and N supply.- 7.5.4. Co-
About the Author: Annikki Mäkelä earned her MSc in Engineering (1980) and Licentiate Tech. (1982) in Systems Theory at the Helsinki University of Technology (HUT), and PhD in Forestry (1988) at the University of Helsinki (UH). After her graduation she held several research positions at HUT's Systems Theory Lab and UH's Department of Silviculture (later Forest Ecology, then Forest Sciences), many of them funded by the Academy of Finland. She was appointed Professor of Silviculture/Applied Forest Ecology at UH in 2005. Dr. Mäkelä has primary research interests in the area of growth, production, carbon balance and population dynamics of boreal forests and practical applications of quantitative models to forest management. She leads the Forest Modelling Group at the UH Department of Forest Sciences where she also teaches undergraduate and graduate courses on modelling tree and stand growth. She has been involved in several national, European and global research projects and networks developing and using forest models, with a strong focus on scaling issues and regional applications of process-based models to management questons under climate change.

Harry T. Valentine earned a B.S. in forestry at Rutgers University in 1970, and then emerged from Yale University with an M.F., Ph.D., and budding interests in sampling, modelling, and forest ecology. He spent his entire professional career as a scientist with the Northern Research Station, USDA Forest Service, starting in 1974 and ending with his retirement in 2016. The first decade of Dr. Valentine's career was spent working on forest insect and disease problems. After 1984, most of his research was concerned with either: a) devising new methods for sampling attributes of trees or forests, or b) achieving a balance between process and applicability in process-based models of trees and stands. Dr. Valentine is co-author, with T.G. Gregoire, of a book entitled: Sampling Strategies for Natural Resources and the Environment.


Best Sellers



Product Details
  • ISBN-13: 9783030357634
  • Publisher: Springer International Publishing
  • Publisher Imprint: Springer
  • Height: 234 mm
  • No of Pages: 310
  • Spine Width: 18 mm
  • Weight: 512 gr
  • ISBN-10: 3030357635
  • Publisher Date: 18 Mar 2021
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: Theory, Formulation and Application
  • Width: 156 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Models of Tree and Stand Dynamics
Springer International Publishing -
Models of Tree and Stand Dynamics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Models of Tree and Stand Dynamics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!