MOSFET Models for VLSI Circuit Simulation
Home > Computing and Information Technology > Computer programming / software engineering > Software Engineering > MOSFET Models for VLSI Circuit Simulation: Theory and Practice
MOSFET Models for VLSI Circuit Simulation: Theory and Practice

MOSFET Models for VLSI Circuit Simulation: Theory and Practice

|
     0     
5
4
3
2
1




International Edition


About the Book

Metal Oxide Semiconductor (MOS) transistors are the basic building block ofMOS integrated circuits (I C). Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as the dominant technology in the semiconductor industry. Over the past decade, the complexity of MOS IC's has increased at an astonishing rate. This is realized mainly through the reduction of MOS transistor dimensions in addition to the improvements in processing. Today VLSI circuits with over 3 million transistors on a chip, with effective or electrical channel lengths of 0. 5 microns, are in volume production. Designing such complex chips is virtually impossible without simulation tools which help to predict circuit behavior before actual circuits are fabricated. However, the utility of simulators as a tool for the design and analysis of circuits depends on the adequacy of the device models used in the simulator. This problem is further aggravated by the technology trend towards smaller and smaller device dimensions which increases the complexity of the models. There is extensive literature available on modeling these short channel devices. However, there is a lot of confusion too. Often it is not clear what model to use and which model parameter values are important and how to determine them. After working over 15 years in the field of semiconductor device modeling, I have felt the need for a book which can fill the gap between the theory and the practice of MOS transistor modeling. This book is an attempt in that direction.

Table of Contents:
1 Overview.- 1.1 Circuit Design with MOSFETs.- 1.2 MOSFET Modeling.- 1.3 Model Parameter Determination.- 1.4 Interconnect Modeling.- 1.5 Subjects Covered.- References.- 2 Review of Basic Semiconductor and pn Junction Theory.- 2.1 Energy Band Model.- 2.2 Intrinsic Semiconductor.- 2.3 Extrinsic or Doped Semiconductor.- 2.4 Electrical Conduction.- 2.5 pn Junction at Equilibrium.- 2.6 Diode Current-Voltage Characteristics.- 2.7 Diode Dynamic Behavior.- 2.8 Real pn Junction.- 2.9 Diode Circuit Model.- 2.10 Temperature Dependent Diode Model Parameters.- References.- 3 MOS Transistor Structure and Operation.- 3.1 MOSFET Structure.- 3.2 MOSFET Characteristics.- 3.3 MOSFET Scaling.- 3.4 Hot-Carrier Effects.- 3.5 VLSI Device Structures.- 3.6 MOSFET Parasitic Elements.- 3.7 MOSFET Length and Width Definitions.- 3.8 MOSFET Circuit Models.- References.- 4 MOS Capacitor.- 4.1 MOS Capacitor with No Applied Voltage.- 4.2 MOS Capacitor at Non-Zero Bias.- 4.3 Capacitance of MOS Structures.- 4.4 Deviation from Ideal C-V Curves.- 4.5 Anomalous C-V Curve (Polysilicon Depletion Effect).- 4.6 MOS Capacitor Applications.- 4.7 Nonuniformly Doped Substrate and Flat Band Voltage.- References.- 5 Threshold Voltage.- 5.1 MOSFET with Uniformly Doped Substrate.- 5.2 Nonuniformly Doped MOSFET.- 5.3 Threshold Voltage Variations with Device Length andWidth.- 5.4 Temperature Dependence of the Threshold voltage.- References.- 6 MOSFET DC Model.- 6.1 Drain Current Calculations.- 6.2 Pao-Sah Model.- 6.3 Charge-Sheet Model.- 6.4 Piece-Wise Drain Current Model for EnhancementDevices.- 6.5 Drain Current Model for Depletion Devices.- 6.6 Effective Mobility.- 6.7 Short-Geometry Models.- 6.8 Impact of Source-Drain Resistance on Drain Current.- 6.9 Temperature Dependence of the Drain Current.- References.- 7 Dynamic Model.- 7.1 Intrinsic Charges and Capacitances.- 7.2 Charge-Based Capacitance Model.- 7.3 Long-Channel Charge Model.- 7.4 Short-Channel Charge Model.- 7.5 Limitations of the Quasi-Static Model.- 7.6 Small-Signal Model Parameters.- References.- 8 Modeling Hot-Carrier Effects.- 8.1 Substrate Current Model.- 8.2 Gate Current Model.- 8.3 Correlation of Gate and Substrate Current.- 8.4 Mechanism of MOSFET Degradation.- 8.5 Measure of Degradation—Device Lifetime.- 8.6 Impact of Degradation on Circuit Performance.- 8.7 Temperature Dependence of Device Degradation.- References.- 9 Data Acquisition and Model Parameter Measurements.- 9.1 Data Acquisition.- 9.2 Gate-Oxide Capacitance Measurement.- 9.3 Measurement of Doping Profile in Silicon.- 9.4 Measurement of Threshold Voltage.- 9.5 Determination of Body Factor ?.- 9.6 Flat Band Voltage.- 9.7 Drain Induced Barrier Lowering (DIBL) Parameter.- 9.8 Determination of Subthreshold Slope.- 9.9 Carrier Inversion Layer Mobility Measurement.- 9.10 Determination of Effective Channel Length and Width.- 9.11 Determination of Drain Saturation Voltage.- 9.12 Measurement of MOSFET Intrinsic Capacitances.- 9.13 Measurement of Gate Overlap Capacitance.- 9.14 Measurement of MOSFET Source/Drain Diode JunctionParameters.- References.- 10 Model Parameter Extraction Using Optimization Method.- 10.1 Model Parameter Extraction.- 10.2 Basics Definitions in Optimization.- 10.3 Optimization Methods.- 10.4 Some Remarks on Parameter Extraction Using OptimizationTechnique.- 10.5 Confidence Limits on Estimated Model Parameter.- 10.6 Parameter Extraction Using Optimizer.- References.- 11 SPICE Diode and MOSFET Models and Their Parameters.- 11.1 Diode Model.- 11.2 MOSFET Level 1 Model.- 11.3 MOSFET Level 2 Model.- 11.4 MOSFET Level 3 Model.- 11.5 MOSFETLevel 4 Model.- 11.6 Comparison of the Four MOSFET Models.- References.- 12 Statistical Modeling and Worst-Case Design Parameters.- 12.1 Methods of Generating Worst Case Parameters.- 12.2 Model Parameter Sensitivity.- 12.3 Statistical Analysis with Parameter Correlation.- 12.4 Factor Analysis.- 12.5 Optimization Method.- References.- Appendix A. Important Properties of Silicon, Silicon Dioxide and Silicon Nitride at 300 K.- Appendix B. Some Important Physical Constants at 300 K.- Appendix C. Unit Conversion Factors.- Appendix D. Magnitude Prefixes.- Appendix F. Charge Based MOSFET Intrinsic Capacitances.- Appendix G. Linear Regression.- Appendix H. Basic Statistical and Probability Theory.- Appendix I. List of Widely Used Statistical Package Programs.


Best Sellers


Product Details
  • ISBN-13: 9783709192498
  • Publisher: Springer Verlag GmbH
  • Publisher Imprint: Springer Verlag GmbH
  • Height: 244 mm
  • No of Pages: 605
  • Returnable: Y
  • Width: 170 mm
  • ISBN-10: 3709192498
  • Publisher Date: 22 Jan 2012
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Sub Title: Theory and Practice


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
MOSFET Models for VLSI Circuit Simulation: Theory and Practice
Springer Verlag GmbH -
MOSFET Models for VLSI Circuit Simulation: Theory and Practice
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

MOSFET Models for VLSI Circuit Simulation: Theory and Practice

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!