Nano-Scale CMOS Analog Circuits by Soumya Pandit
Home > General > Nano-Scale CMOS Analog Circuits
Nano-Scale CMOS Analog Circuits

Nano-Scale CMOS Analog Circuits


     0     
5
4
3
2
1



Available


About the Book

Reliability concerns and the limitations of process technology can sometimes restrict the innovation process involved in designing nano-scale analog circuits. The success of nano-scale analog circuit design requires repeat experimentation, correct analysis of the device physics, process technology, and adequate use of the knowledge database.

Starting with the basics, Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design introduces the essential fundamental concepts for designing analog circuits with optimal performances. This book explains the links between the physics and technology of scaled MOS transistors and the design and simulation of nano-scale analog circuits. It also explores the development of structured computer-aided design (CAD) techniques for architecture-level and circuit-level design of analog circuits.

The book outlines the general trends of technology scaling with respect to device geometry, process parameters, and supply voltage. It describes models and optimization techniques, as well as the compact modeling of scaled MOS transistors for VLSI circuit simulation.

- Includes two learning-based methods: the artificial neural network (ANN) and the least-squares support vector machine (LS-SVM) method

- Provides case studies demonstrating the practical use of these two methods

- Explores circuit sizing and specification translation tasks

- Introduces the particle swarm optimization technique and provides examples of sizing analog circuits

- Discusses the advanced effects of scaled MOS transistors like narrow width effects, and vertical and lateral channel engineering


Nano-Scale CMOS Analog Circuits: Models and CAD Techniques for High-Level Design

describes the models and CAD techniques, explores the physics of MOS transistors, and considers the design challenges involving statistical variations of process technology parameters and reliability constraints related to circuit design.


About the Author:

Soumya Pandit received a B.Sc degree with Physics Honors, M.Sc degree in electronic science from University of Calcutta in 1998 and 2000, and an M.Tech degree in radio physics and electronics from the same university in 2002. He obtained his PhD degree from Indian Institute of Technology, Kharagpur in information technology in the year 2009. His current research activities are on statistical CMOS analog circuit design and optimization, process-device-circuit interaction, and soft computing applications. Dr. Pandit has to his credit several international journal and conference publications. He is a member of IEEE, USA and an associate member of the Institute of Engineers (India).


Chittaranjan Mandal

received his PhD from the Indian Institute of Technology, Kharagpur, India, in 1997. He is currently a professor in the Department of Computer Science and Engineering and also the School of Information Technology at IIT, Kharagpur. His research interests include high-level system design, formal modeling, and verification. He has been an Industrial Fellow of Kingston University, UK, since 2000 and was also a recipient of a Royal Society Fellowship for conducting collaborative research in the UK. He has handled sponsored projects from government agencies as well as private agencies such as Nokia, Natsem, and Intel. He also serves as a reviewer for several journals and conferences.

Amit Patra

received B.Tech., M.Tech., and Ph.D. degrees from the Indian Institute of Technology, Kharagpur in 1984, 1986, and 1990 respectively. He is currently a professor of electrical engineering at IIT Kharagpur where he served as the Dean (Alumni Affairs and International Relations) between 2007 and 2013. His current research interests include power management circuits, mixed-signal SoC design and embedded control systems. He has published more than 200 research papers and designed about 12 integrated circuits. He has carried out sponsored research with multiple industries such as National Semiconductor Corporation, Freescale Semiconductor, Infineon Technologies and Maxim Integrated Circuits.


Best Sellers



Product Details
  • ISBN-13: 9781466564268
  • Publisher: CRC Press
  • Publisher Imprint: Crc Press
  • Depth: 25
  • Language: English
  • Returnable: N
  • Spine Width: 28 mm
  • Weight: 776 gr
  • ISBN-10: 1466564261
  • Publisher Date: 20 Feb 2014
  • Binding: Hardback
  • Height: 234 mm
  • No of Pages: 408
  • Series Title: English
  • Sub Title: Models and CAD Techniques for High-Level Design
  • Width: 163 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Nano-Scale CMOS Analog Circuits
CRC Press -
Nano-Scale CMOS Analog Circuits
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Nano-Scale CMOS Analog Circuits

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!