Nilpotent Orbits, Primitive Ideals, and Characteristic Classes
Home > Mathematics and Science Textbooks > Mathematics > Algebra > Nilpotent Orbits, Primitive Ideals, and Characteristic Classes: A Geometric Perspective in Ring Theory
Nilpotent Orbits, Primitive Ideals, and Characteristic Classes: A Geometric Perspective in Ring Theory

Nilpotent Orbits, Primitive Ideals, and Characteristic Classes: A Geometric Perspective in Ring Theory

|
     0     
5
4
3
2
1




International Edition


About the Book

1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The "vertices" of this graph are some of the most important objects in representation theory. Each has a theory in its own right, and each has had its own independent historical development. - A nilpotent orbit is an orbit of the adjoint action of G on g which contains the zero element of g in its closure. (For the special linear group 2 G = SL(n,C), whose Lie algebra 9 is all n x n matrices with trace zero, an adjoint orbit consists of all matrices with a given Jordan canonical form; such an orbit is nilpotent if the Jordan form has only zeros on the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old.

Table of Contents:
General Introduction.- § 1. A Description of Springer’s Weyl Group Representations in Terms of Characteristic Classes of Cone Bundles.- 1.1 Segre classes of cone bundles.- 1.2 Characteristic class of a subvariety of a vector bundle.- 1.3 Characteristic class determined by a sheaf on a bundle.- 1.4 Comparison of the two definitions for Q.- 1.5 Homology of the flag variety.- 1.6 Cohomology of the flag variety.- 1.7 Orbital cone bundles on the flag variety.- 1.8 Realization of Springer’s Weyl group representation.- 1.9 Reformulation in terms of intersection homology.- 1.10 The Weyl group action.- 1.11 Reduction to a crucial lemma.- 1.12 Completion of the proof of theorem 1.8.- 1.13 Comparison with Springer’s original construction.- 1.14 Theorem: The maps in the diagram are W equivariant.- 1.15 Hotta’s transformation formulas.- § 2. Generalities on Equivariant K-Theory.- 2.1 Algebraic notion of fibre bundle.- 2.2 Equivariant vector bundles and definition of KG(X).- 2.3 Equivariant homogeneous vector bundles.- 2.4 Functoriality in the group G.- 2.5 Functoriality in the space X.- 2.6 The sheaf theoretical point of view.- 2.7 Existence of equivariant locally free resolutions.- 2.8 Remarks on Gysin homomorphisms in terms of coherent sheaves.- 2.9 Equivariant K-theory on a vector bundle: Basic restriction techniques.- 2.10 Filtrations on KG(X).- 2.11 Representation rings for example.- 2.12 Application of equivariant K-theory to D-modules.- § 3. Equivariant K-Theory of Torus Actions and Formal Characters.- 3.1 The completed representation ring of a torus.- 3.2 Formal characters of T-modules.- 3.3 Example.- 3.4 T-equivariant modules with highest weight.- 3.5 Projective and free cyclic highest weight modules.- 3.6 Formal characters of equivariant coherent sheaves.- 3.7Restriction to the zero point.- 3.8 Computation of ? degree.- 3.9 Character polynomials.- 3.10 Degree of character polynomial equals codimension of support.- 3.11 Positivity property of character polynomials.- 3.12 Division by a nonzero divisor.- 3.13 Proof of theorem 3.10 and 3.11.- 3.14 Determination of character polynomials by supports.- 3.15 The theory of Hilbert—Samuel polynomials as a special case.- 3.16 Restriction to one parameter subgroups.- 3.17 A lemma on the growth of coefficients of a power series.- 3.18 An alternative proof of theorem 3.10.- § 4. Equivariant Characteristic Classes of Orbital Cone Bundles.- 4.1 Borel pictures of the cohomology of a flag variety.- 4.2 Description in terms of harmonic polynomials on a Cartan subalgebra.- 4.3 Equivariant K—theory on T*X.- 4.4 Restriction to a fibre of T*X.- 4.5 Definition of equivariant characteristic classes.- 4.6 Comparison to the characteristic classes defined in §1.- 4.7 Equivariant characteristic classes of orbital cone bundles.- 4.8 Comparison with Joseph’s notion of “characteristic polynomials”.- 4.9 Generalization to the case of sheaves.- 4.10 Equivariance under a Levi subgroup.- 4.11 Multiple cross section of a unipotent action.- 4.12 For example SL2 equivariance.- 4.13 Completing the proof of theorem 4.7.2.- 4.14 Reproving Hotta’s transformation formula.- 4.15 On explicit computations of our characteristic classes.- 4.16 Example.- 4.17 Remark.- § 5. Primitive Ideals and Characteristic Classes.- 5.1 Characteristic class attached to a g module.- 5.2 Translation invariance.- 5.3 Characteristic variety of a Harish—Chandra bimodule.- 5.4 Homogeneous Harish-Chandra bimodules.- 5.5 Characteristic cycle and class of a Harish—Chandra bimodule.- 5.6 Identification with a characterpolynomial.- 5.7 Harmonicity of character polynomial.- 5.8 Equivariant characteristic class for a Harish—Chandra bimodule.- 5.9 Alternative proof of identification with character polynomials.- 5.10 Some non—commutative algebra.- 5.11 Definition of the polynomials PW.- 5.12 Relation to primitive ideals.- 5.13 Irreducibility of Joseph’s Weyl group representation.- 5.14 Irreducibility of associated varieties of primitive ideals.- 5.15 Evaluation of character polynomials.- 5.16 Computation of Goldie ranks.- 5.17 Joseph—King factorization of polynomials PW.- 5.18 Goldie ranks of primitive ideals.


Best Sellers


Product Details
  • ISBN-13: 9780817634735
  • Publisher: Birkhauser Boston Inc
  • Publisher Imprint: Birkhauser Boston Inc
  • Height: 235 mm
  • No of Pages: 134
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 0817634738
  • Publisher Date: 01 Dec 1989
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Sub Title: A Geometric Perspective in Ring Theory


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Nilpotent Orbits, Primitive Ideals, and Characteristic Classes: A Geometric Perspective in Ring Theory
Birkhauser Boston Inc -
Nilpotent Orbits, Primitive Ideals, and Characteristic Classes: A Geometric Perspective in Ring Theory
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Nilpotent Orbits, Primitive Ideals, and Characteristic Classes: A Geometric Perspective in Ring Theory

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!