Summary. Introduction. Notation.
1. DEFINITION OF OPERATIONAL AMPLIFIERS. 1.1 Operational Inverting Amplifier (OIA). 1.2 Operational Voltage Amplifier (OVA). 1.3 Operational Current Amplifier (OCA). 1.4 Operational Floating Amplifier (OFA). 1.5 Conclusion. 1.6 References.
2. MACROMODELS. 2.1 Operational Inverting Amplifier (OIA). 2.2 Operational Voltage Amplifier (OVA). 2.3 Operational Current Amplifier (OCA). 2.4 Operational Floating Amplifier (OFA). 2.5 Macromodels in Spice. 2.6 Measurement Techniques for Operational Amplifiers. 2.7 Problems and Simulation Exercises. 2.8 References.
3. APPLICATIONS. 3.1 Operational Inverting Amplifier. 3.2 Operational Voltage Amplifier. 3.3 Operational Current Amplifier. 3.4 Operational Floating Amplifier. 3.5 Dynamic range. 3.6 Problems. 3.7 References.
4. INPUT STAGES. 4.1 Offset, Bias, and Drift. 4.2 Noise. 4.3 Common-Mode Rejection. 4.4 Rail-to-rail Input Stages. 4.5 Problems and Simulation Exercises. 4.6 References.
5. OUTPUT STAGES. 5.1 Power Efficiency of Output Stages. 5.2 Classification of Output Stages. 5.3 Feedforward Class-AB Biasing (FFB). 5.4 Feedback Class-AB Biasing (FBB). 5.5 Saturation Protection and Current Limitation. 5.6 Problems and Simulation Exercises. 5.7 References.
6. OVERALL DESIGN. 6.1 Classification of Overall Topologies. 6.2 Frequency Compensation. 6.3 Slew Rate. 6.4 Non-Linear Distortion. 6.5 Problems and Simulation Exercises. 6.6 References.
7. DESIGN EXAMPLES. 7.1 GA-CF Configuration. 7.2 GA-GA Configuration. 7.3 GA-CF-VF Configuration. 7.4 GA-GA-VF Configuration. 7.5 GA-CF-VF/GA Configuration. 7.6 GA-GA-VF/GA Configuration. 7.7 GA-CF-GA Configuration. 7.8 GA-GA-GA Configuration. 7.9 GA-GA-GA-GA Configuration. 7.10 Problems and Simulation Exercises. 7.11 References.
8. FULLY DIFFERENTIAL OPERATIONAL AMPLIFIERS. 8.1 Fully Differential GA-CF Configuration. 8.2 Fully Differential GA-CF-GA Configuration. 8.3 Fully Differential GA-GA-GA-GA Configuration. 8.4 Problems and Simulation Exercises. 8.5 References.
9. OPERATIONAL FLOATING AMPLIFIERS (OFA). 9.1 Introduction. 9.2 Unipolar Voltage-to-Current converter. 9.3 Differential Voltage-to-Current converters. 9.4 Instrumentation Amplifiers. 9.5 Universal class-AB voltage-to-current converter design using an Instrumentation Amplifier. 9.6 Universal class-A OFA design. 9.7 Universal class-AB OFA realization with power-supply isolation. 9.8 Universal Class-AB OFA design. 9.9 Problems. 9.10 References.
10. LOW NOISE AND LOW OFFSET AMPLIFIERS. 10.1 Introduction. 10.2 Appications of Instrumentation Amplifiers. 10.3 Three-OpAmp Instrumentation Amplifiers. 10.4 Indirect-Current-Feedback InstAmps. 10.5 Auto-Zero Opamps and InstAmps. 10.6 Chopper OpAmps and InstAmps. 10.7 Chopper-Stabilized OpAmps and InstAmps. 10.8 Chopper-Stabilized and AZ Chopper OA and IA. 10.9 Chopper Amplifiers with Ripple-Reduction Loop. 10.10 Chopper Amplifiers with Capacitive-Coupled Input. 10.11 Gain Accuracy of Instrumentation Amplifiers. 10.12 Summary Low Offset. 10.13 References.
Biography. Index.
About the Author: Johan H. Huijsing received his M.Sc. in Electrical Engineering from Delft University of Technology, Delft, The Netherlands, in 1969, and his Ph.D. from the same University in 1981 for work on operational amplifiers. Since 1969 he has been a member of the Research and Teaching Staff of the Electronic Instrumentation Laboratory, Department of Electrical Engineering, Delft University of Technology, where he became a full Professor of Electronic Instrumentation since 1990, and professor-emeritus since 2003. He teaches courses on Electrical Measurement Techniques, Electronic Instrumentation, Operational Amplifiers and Analog-to-digital Converters. His field of research is Analog Circuit Design (operational amplifiers, analog multipliers, etc.) and Integrated Smart Sensors. He is author or co-author of some 250 scientific papers, 40 patents and 13 books, and co-editor of 13 books. He is fellow of IEEE. He received the title award of "Simon Stevin Meester" from the Dutch Technology Foundation.