The text comprehensively discusses the latest Opto-VLSI devices and circuits useful for healthcare and biomedical applications. It further emphasizes the importance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries.
- Discusses advanced concepts in the field of electro-optics devices for medical applications.
- Presents optimization techniques including logical effort, particle swarm optimization, and genetic algorithm to design Opto-VLSI devices and circuits.
- Showcases the concepts of artificial intelligence and machine learning for smart medical devices and data auto-collection for distance treatment.
- Covers advanced Opto-VLSI devices including a field-effect transistor and optical sensors, spintronic, and photonic devices.
- Highlights application of flexible electronics in health monitoring and artificial intelligence integration for better medical devices.
The text presents the advances in the fields of optics and VLSI and their applicability in diverse areas including biomedical engineering, and the healthcare sector. It covers important topics such as FET biosensors, optical biosensors, and advanced optical materials. It further showcases the significance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries. It will serve as an ideal design book for senior undergraduate, graduate students, and academic researchers in the fields including electrical engineering, electronics and communication engineering, computer engineering, and biomedical engineering
About the Author: Ankur Kumar is presently working as an assistant professor, electronics and communication engineering at, Institute of Engineering and Technology, Lucknow, India. His areas of research include low power VLSI design, analog, and mixed-signal processing, and field-effect transistor biosensors. He has published research papers in journals and conferences of national and international repute. He is also a peer reviewer of journals including Journal of Circuits, Systems, and Computers, and Analog Integrated Circuits and Signal Processing. He is an active member of the Institute of Electrical and Electronics Engineers (IEEE).
Sajal Agarwal is currently working as an assistant professor in, the department of electronics engineering, Rajiv Gandhi Institute of Petroleum Technology, Amethi, India. Her research interest includes the study and fabrication of optical devices, thin films, and their characterization. She has published more than twenty research papers in peer-reviewed journals and conferences. She has received a Young Scientist Travel Grant from SERB, DST, India in 2017 to visit the USA. She is a professional member of the Institute of Electrical and Electronics Engineers (IEEE) and The Optical Society (OSA).
Vikrant Varshney is presently working as an assistant professor, in the department of electronics and communication engineering, Meerut Institute of Engineering and Technology, Meerut, India. He has published more than twenty research papers in referred IEEE, Springer, Elsevier, and World Scientific International Journals and Conferences. His research area of expertise includes high-speed VLSI devices, VLSI device modeling, and characterization, low-voltage high-speed VLSI circuits design in analog/mixed-signal system, noise, and variance tolerant Domino circuits for low power applications.
Varun Mishra is working as an assistant professor in, the department of electronics and communication engineering, Graphic Era (Deemed to be University), Dehradun, India. He has published research papers in SCI-indexed journals and conferences. His areas of interest include microelectronics, semiconductor device modeling, and simulation. He is also an organizing member of the International Conference on Device Intelligence, Computing and Communication Technologies.
Yogesh Kumar Verma is presently working as an assistant professor, at the school of electronics and electrical engineering, Lovely Professional University, Punjab, India. He has published more than 15 research papers in SCI-indexed journals and more than 10 research papers in international conference proceedings. His research interest includes analytical modeling and numerical simulations of semiconductor devices including Heterostructure Field Effect Transistor (HFET), Tunnel Field Effect Transistor (TFET), and Heterojunction Bipolar Transistor (HBT).
Suman Lata Tripathi is presently working as a professor, at the school of electronics and electrical engineering, Lovely Professional University, Punjab, India. She has published more than 55 research papers in refereed IEEE, Springer, and IOP science journals and conferences. She has also published 11 Indian patents and 2 copyright. She has edited and authored more than 14 books/1 Book Series in different areas of Electronics and electrical engineering. Her area of expertise includes microelectronics device modeling and characterization, low power VLSI circuit design, VLSI design of testing, advanced FET design for IoT, Embedded System Design and biomedical applications, etc.