Particle Physics in the Lhc Era by Robin Devenish
Home > Science & Mathematics > Astronomy, space & time > Galaxies & stars > Particle Physics in the Lhc Era
Particle Physics in the Lhc Era

Particle Physics in the Lhc Era


     0     
5
4
3
2
1



Available


About the Book

This text gives an introduction to particle physics at a level accessible to advanced undergraduate students. It is based on lectures given to 4th year physics students over a number of years, and reflects the feedback from the students. The aim is to explain the theoretical and experimental basis of the Standard Model (SM) of Particle Physics with the simplest mathematical treatment possible. All the experimental discoveries that led to the understanding of the SM relied on particle detectors and most of them required advanced particle accelerators. A unique feature of this book is that it gives a serious introduction to the fundamental accelerator and detector physics, which is currently only available in advanced graduate textbooks. The mathematical tools that are required such as group theory are covered in one chapter. A modern treatment of the Dirac equation is given in which the free particle Dirac equation is seen as being equivalent to the Lorentz transformation. The
idea of generating the SM interactions from fundamental gauge symmetries is explained.

The core of the book covers the SM. The tools developed are used to explain its theoretical basis and a clear discussion is given of the critical experimental evidence which underpins it. A thorough account is given of quark flavour and neutrino oscillations based on published experimental results, including some from running experiments. A simple introduction to the Higgs sector of the SM is given. This explains the key idea of how spontaneous symmetry breaking can generate particle masses without violating the underlying gauge symmetry. A key feature of this book is that it gives an accessible explanation of the discovery of the Higgs boson, including the advanced statistical techniques required. The final chapter gives an introduction to LHC physics beyond the standard model and the techniques used in searches for new physics. There is an outline of the shortcomings of the SM and a discussion of possible solutions and future experiments to resolve these outstanding questions.

About the Author:
Giles Barr, Associate Professor of Physics, University of Oxford, Robin Devenish, Emeritus Professor of Physics, University of Oxford, Roman Walczak, Associate Professor of Physics, University of Oxford, Tony Weidberg, Professor of Physics, University of Oxford

Robin Devenish studied mathematics and physics at the University of Cambridge. After post-doctoral positions at Lancaster University and University College London, he joined the DESY laboratory in Hamburg in 1973. At DESY he worked on electron-positron annihilation physics with the PLUTO experiment on the DORIS and PETRA colliders. In 1979 he joined the Physics Department at Oxford University, continuing to work on e+e- physics at DESY, but now with the TASSO experiment. He was a founder member of the Oxford team that joined the ZEUS experiment at the electron-proton collider HERA (also at DESY). His work at HERA focused on using deep-inelastic scattering to probe experimental aspects of quantum chromodynamics. With Amanda Cooper-Sarkar he wrote the definitive text on `Deep-Inelastic Scattering' (OUP 2004).

Tony Weidberg did a PhD at the University of Cambridge and then worked from 1982-1989 at CERN on the UA2 experiment at the CERN antiproton-proton collider. He worked on the discovery of the W and Z bosons and on the development of a novel scintillating fibre detector. He moved to Oxford in 1989 to work on silicon detector R&D for the LHC. He was a founding member of the ATLAS collaboration and jointly leads the Oxford ATLAS group which has become one of the largest university groups in ATLAS. He worked on the R&D for electrical and optical services for the ATLAS SemiConductor Tracker (SCT) and was responsible for the production and QA/QC for these subsystems. He worked on the analysis of some of the Standard Model measurements at the LHC.

Giles Barr did his undergraduate degree in physics at the University of Oxford and continued at Oxford as a graduate student working on underground detector physics at the Soudan-2 experiment. There, he worked with Tom Gaisser and Todor Stanev on calculating the fluxes of neutrinos produced by cosmic rays in the atmosphere. After obtaining his doctorate in 1988, he moved to the CERN laboratory in Geneva to work on the direct CP violation search experiment NA31. After becoming a research scientist at CERN, he moved to the NA48 experiment, which further studied the phenomenon of direct CP violation in kaons. In 2000, he joined the faculty at the University of Oxford and moved back to neutrino physics, working first on the MINOS and then the T2K long-baseline neutrino experiments. He is currently working on the design of the next generation of long-baseline neutrino experiments, designed specifically to observe the CP violation in the neutrino sector, should it exist.

Roman Walczak studied physics at the University of Warsaw where he was employed after graduation in 1977. Whilst affiliated with Warsaw, he spent large fraction of his time being involved in projects abroad, mostly at DESY and CERN. In 1981 he obtained Dr. rer. nat. degree from the Heidelberg University. His main expertise in particle physics is in design of wire chambers and calorimeters and on physics beyond SM as well as on some aspects of the QCD. He worked on projects at the following accelerators: PS, ISR, SPS at CERN, and PETRA and HERA at DESY. He is one of the founders of the ZEUS experiment. He was one the ZEUS coordinators responsible for designing, building and commissioning of the ZEUS detector. He also served as a coordinator of Exotic (i.e. Beyond SM) Physics Group. In 1993 he moved to Oxford as University Lecturer at the University of Oxford and Tutorial Fellow at Somerville College. He was promoted to Reader in 2008 and to Associate Professor in 2014.


Best Sellers



Product Details
  • ISBN-13: 9780198748557
  • Publisher: Oxford University Press, USA
  • Publisher Imprint: Oxford University Press, USA
  • Depth: 19
  • Language: English
  • Returnable: Y
  • Spine Width: 25 mm
  • Width: 191 mm
  • ISBN-10: 0198748558
  • Publisher Date: 07 Mar 2016
  • Binding: Hardback
  • Height: 249 mm
  • No of Pages: 432
  • Series Title: Oxford Master Physics
  • Weight: 1168 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Particle Physics in the Lhc Era
Oxford University Press, USA -
Particle Physics in the Lhc Era
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Particle Physics in the Lhc Era

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!