About the Book
For a one-semester alternative to the traditional two-semester developmental algebra sequence that prepares students specifically for an Introductory Statistics course.
Looking for a new path in algebra? Using authentic data to make math meaningful to students,
Jay Lehmann's A Pathway to Introductory Statistics provides a one-semester alternate path through developmental algebra to accelerate and prepare non-STEM students for introductory statistics. For many students' majors, the most fitting college-level math course is statistics. Tailoring their developmental sequence-in both content and approach-to prepare students for this course of study can only improve their success. Infused with highly relevant data sets throughout, Lehmann presents students with both an introduction to descriptive statistics and the requisite algebra topics needed for a statistics course, while demonstrating the close link between the two subjects. This text equips students to reason statistically as they discover the skills and concepts they'll need for statistics.
Note: You are purchasing a standalone product; MyMathLab does not come packaged with this content. Students, if interested in purchasing this title with MyMathLab, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information. If you would like to purchase boththe physical text and MyMathLab, search for: 0134310039 / 9780134310039 Pathway to Introductory Statistics, A, Access Card Package Package consists of: 0134107179 / 9780134107172 Pathway to Introductory Statistics, A 0321431308 / 9780321431301 MyMathLab -- Glue-in Access Card 0321654064 / 9780321654069 MyMathLab Inside Star Sticker
About the Author:
Jay Lehmann has taught at College of San Mateo for more than twenty years, where he has received the Shiny Apple Award for excellence in teaching. He has worked on a NSF-funded grant to study classroom assessment and has performed research on collaborative directed-discovery learning. Jay has served as the newsletter editor for CMC3 (California Mathematics Council, Community College) for twelve years. He has presented at more than seventy-five conferences, including AMATYC, ICTCM, and T3, where he has discussed curve fitting and sung his "Number Guy" song. Jay plays in a rock band called The Procrastinistas, who play at various clubs in the San Francisco Bay Area, where Jay, his wife Keri, and son Dylan reside. He plays a number of instruments including bass, guitar, piano, violin, and baritone. In addition to his elementary, intermediate, and combined algebra textbooks, Jay is currently writing a heist novel for high school students, which he hopes will be published before Dylan outgrows it. Dylan, a devoted drummer and artist, drafted many of the cartoons that are included in Jay's textbooks.
In the words of the author: Before writing my algebra series, it was painfully apparent that my students couldn't relate to the applications in the course. I was plagued with the question, "What is this good for?" To try to bridge that gap, I wrote some labs, which facilitated my students in collecting data, finding models via curve fitting, and using the models to make estimates and predictions. My students really loved working with the current, compelling, and authentic data and experiencing how mathematics truly is useful. My students' response was so strong that I decided to write an algebra series. Little did I know that to realize this goal, I would need to embark on a 15-year challenging journey, but the rewards of hearing such excitement from students and faculty across the country has made it all worthwhile! I'm proud to have played even a small role in raising peoples' respect and enthusiasm for mathematics. I have tried to honor my inspiration: by working with authentic data, students can experience the power of mathematics. A random-sample study at my college suggests that I am achieving this goal. The study concludes that students who used my series were more likely to feel that mathematics would be useful in their lives (P-value 0.0061) as well as their careers (P-value 0.024). The series is excellent preparation for subsequent courses; in particular, because of the curve fitting and emphasis on interpreting the contextual meaning of parameters, it is an ideal primer for statistics. In addition to curve fitting, my approach includes other types of meaningful modeling, directed-discovery explorations, conceptual questions, and of course, a large bank of skill problems. The curve-fitting applications serve as a portal for students to see the usefulness of mathematics so that they become fully engaged in the class. Once involved, they are more receptive to all aspects of the course.