Photoelectrochemical Water Splitting by P. Perez Rodriguez
Home > Technology & Engineering > Energy technology & engineering > Alternative & renewable energy sources & technology > Photoelectrochemical Water Splitting
Photoelectrochemical Water Splitting

Photoelectrochemical Water Splitting


     0     
5
4
3
2
1



Available


About the Book

The world energy demand has been steadily growing in the past decades as the world population increases and more nations develop to higher standards of living. Traditional solutions such as fossil fuels and nuclear energy have not been able to arrive to a sustainable plan on how to supply this energy the next few decades, and many armed conflicts have been started due to the limited access of such a scarce resource. Moreover, they are responsible for toxic waste and greenhouse gas emissions, which are causing one of the most important environmental crises in the history of the planet. Thus, alternative solutions must be considered in the energy transition that would be able to supply the needed energy in the future. Renewable energies, including wind, solar, biomass, wave and geothermal among others, are the main hope to cover the energy needs of society in the future, since it is a more sustainable way of harvesting energy and these resources are virtually infinite in terms of time scalability. In particular, solar energy is the most readily abundant energy source in most areas of the world, since the amount of solar energy received by the earth every year is thousands of times higher than the energy demand. In addition, it is considered one of the sources with the least impact in the surrounding environment among all the renewable energy sources, since it does not produce sound, and the most common techniques do not produce toxic waste. For these reasons, solar energy has experimented a steep growth in production and implementation recently.However, if solar energy sources are to play a crucial role in the necessary energy transition, they must be able to supply a constant amount of power throughout the year. One of the main problems that solar energy faces is its daily and seasonal fluctuations due to the nature of this source, which threaten to destabilize the electricity network if solar energy is to be installed at very large scale. Thus, reliable systems for energy storage must be installed to assure that the fluctuations in the energy source do not affect the energy supply chain. So far, batteries have been used as the main energy storage system. However, they are rather bulky and expensive, with toxic and rare materials at their core, and thus ineffective for long-term energy storage. One of the most promising approaches to this issue, especially to long term storage, is the use of hydrogen as an energy storage material for solar energy. Hydrogen has a high energy density and can be stored as a pressurized gas, a liquid, a metal hydride, or further converted in more common hydrocarbons such as methane or ethanol. An interesting way to achieve hydrogen using solar energy is to drive a photoelectrochemical (PEC) reaction, in which a semiconductor material is excited, producing an electron-hole pare that would be directly used to drive the electrochemical reaction of water electrolysis, also called water splitting. This book gives an account of the main physical principles governing this process, identifying important barriers and areas of potential improvements. In particular, there seems to be three major steps that may limit the performance of these devices: the charge carrier separation in the semiconductor material used as photoelectrode; the interface between the semiconductor and the electrolyte, including the charge injection from one to the other, the catalytic activity at the surface and the possible stability issues that can occur; and the ion transfer and optimum pH within the electrolyte itself. All these issues have been further explored here.The main strategies applied so far to achieve a good charge carrier generation, separation and injection are reviewed within this book, with the most important materials investigated in the field to date. There seems to be a special focus historically in TiO2 and Fe2O3, as they are among the first materials to be investigated and developed. Here, the main reasons behind these choices were investigated, especially based on the physical principles previously explained. In addition, it is also interesting to look at possible catalysts for these reactions, both in the areas of precious metals and earth abundant materials, and to further explore the strategy of including protective layers to avoid corrosion of the photoelectrodes. Moreover, some emerging trends such as new more complex materials, nanostructures of such semiconductors, and the application of multijunctions and membranes are reviewed. In addition, the fabrication techniques and measuring methods are listed, identifying possible sources of practical challenges. Practical issues regarding the fabrication techniques seem to have been one of the main limits for the performance of more earth-abundant materials, and thus further understanding on how these techniques affect the material properties of the semiconductors fabricated up to date. Moreover, there has been several instances of irregular or uninformed reporting of performances within this field, thus, understanding the different measurement techniques and how to relate those to the final expected performance and calculated solar-to-hydrogen efficiencies is crucial to raise the reporting standards of the field.Finally, the economic feasibility of such approach into a reactor design and a hydrogen production plant are discussed, allowing to draw some general conclusions and indicating future approaches that must be thoroughly investigated and improve to arrive to an economic and efficient PEC system. This is especially relevant since, so far, most of the PEC devices reported are in the scale of millimeters to centimeters. Thus, looking forward to the implementation of such devices at large scale, possible bottlenecks and additional equipment needed is of vital importance for a reliable economic analysis.In summary, this book tries to give an overview of the field of photoelectrochemical water splitting, by looking at the physics, the state-of-the-art devices, emerging trends and fabrication and measurement techniques. Moreover, the economic feasibility based on these reported performances and trends has been investigated. This analysis allows drawing some conclusions in the feasibility of the methods presented, and their role on the energy transition for future societies.
About the Author: Paula received her Bachelor degree in Chemical Engineering in 2011 from the Universidad de Cantabria in Spain, with an exchange program in Oregon State University in 2009-2010. She obtained her M.Sc. in Sustainable energy technology in 2013 in TU Delft (Netherlands). Her M.Sc. thesis in the PVMD group dealt with Photoelectrochemcial devices for solar water splitting. Since May 2014 she is a PhD student working on the development and optimization of the monolithic photovoltaic (PV)/photoelectrochemical (PEC) devices based on earth abundant materials such as silicon and carbon with ground-breaking high solar-to-hydrogen (STH) conversion efficiency for water splitting.


Best Sellers



Product Details
  • ISBN-13: 9781773610955
  • Publisher: Arcler Press
  • Publisher Imprint: Arcler Press
  • Height: 229 mm
  • No of Pages: 276
  • Spine Width: 0 mm
  • ISBN-10: 1773610953
  • Publisher Date: 01 Nov 2017
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Width: 152 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Photoelectrochemical Water Splitting
Arcler Press -
Photoelectrochemical Water Splitting
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Photoelectrochemical Water Splitting

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals



    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!