Pipe Flow Provides detailed coverage of hydraulic analysis of piping systems, revised and updated throughout
Pipe Flow: A Practical and Comprehensive Guide provides the information required to design and analyze piping systems for distribution systems, power plants, and other industrial operations. Divided into three parts, this authoritative resource describes the methodology for solving pipe flow problems, presents loss coefficient data for a wide range of piping components, and examines pressure drop, cavitation, flow-induced vibration, and other flow phenomena that affect the performance of piping systems. Throughout the book, sample problems and worked solutions illustrate the application of core concepts and techniques.
The second edition features revised and expanded information throughout, including an entirely new chapter that presents a mixing section flow model for accurately predicting jet pump performance. This edition includes additional examples, supplemental problems, and a new appendix of the speed of sound in water. With clear explanations, expert guidance, and precise hydraulic computations, this classic reference text remains required reading for anyone working to increase the quality and efficiency of modern piping systems.
- Discusses the fundamental physical properties of fluids and the nature of fluid flow
- Demonstrates the accurate prediction and management of pressure loss for a variety of piping components and piping systems
- Reviews theoretical research on fluid flow in piping and its components
- Presents important loss coefficient data with straightforward tables, diagrams, and equations
- Includes full references, further reading sections, and numerous example problems with solution
Pipe Flow: A Practical and Comprehensive Guide, Second Edition is an excellent textbook for engineering students, and an invaluable reference for professional engineers engaged in the design, operation, and troubleshooting of piping systems.
About the Author:
Donald C. Rennels joined the Nuclear Energy Division of General Electric Company in 1971. His work included preparing technical design procedures and developing fluid flow models of reactor vessel internals and nuclear steam supply systems. He addressed hydraulic flow problems in the nuclear power industry worldwide. After retirement, Rennels served as a consultant at GE-Hitachi.